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1 It is for this reason, and also to correctly attribute credit (and blame) for the availability of various fundamental equations, that the 
references cited in this Letter are intentionally biased towards the older literature. Much of the information presented here has been 
described in various contexts outside the cements literature several decades ago. However, the reappearance of certain errors in modern 
cement hydration kinetic models necessitates the re-opening of the discussion in this specific context. It is also noted that a far more detailed 
discussion of various cement hydration models was presented by Xie & Biernacki [2], and the reader is referred to that document for 
additional commentary beyond the scope of this Letter. 
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Abstract 

The equation of Jander [W. Jander, Z. Anorg. Allg. Chem. (1927) 163: 1-30] is often used to describe the kinetics of dissolution of solid cement grains, as a 
component of mathematical descriptions of the broader cement hydration process. The Jander equation can be presented as kt/R2 =[1-(1-α) (1/3) ]2 where 
k is a constant, t is time, R is the initial radius of a solid reactant particle, and α is the fractional degree of reaction. This equation is attractive for its 
simplicity and apparently straightforward derivation. However, the derivation of the Jander equation involves an approximation related to neglect of 
particle surface curvature which means that it is strictly not correct for anything beyond a very small extent of reaction. This is well documented in the 
broader literature, but this information has not been effectively propagated to the field of cement science, which means that researchers are continuing 
to base models on this erroneous equation. It is recommended that if the assumptions of diffusion control and unchanging overall particle size which 
lead to the selection of the Jander equation are to be retained, it is preferable to instead use the Ginstling-Brounshtein equation [A.M. Ginstling, B.I. 
Brounshtein, J. Appl. Chem. USSR (1950) 23: 1327-1338], which does correctly account for particle surface curvature without significant extra 
mathematical complication. Otherwise, it is possible (and likely desirable) to move to more advanced descriptions of particle-fluid reactions to account 
for factors such as dimensional changes during reaction, and the possibility of rate controlling influences other than diffusion. 
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 Introduction 1

The ability to predict the rate, and thus the extent, of 
hydration of cementitious solid precursors (Portland cement, 
alternative cements and/or supplementary cementitious 
materials) lies at the heart of any model which describes the 
evolution of the chemistry or microstructure of pastes, 
grouts, mortars or concretes based on these materials. Such 
models are essential to the description of heat evolution, 
internal chemical and geometric evolution of hydration 
products, and performance in service. Many models have 
been developed and published to describe different aspects 
of the hydration of various types of cements, with different 
degrees of chemical and microstructural specificity, and 
making a wide range of different assumptions regarding the 
rate-controlling processes and mechanisms [1, 2]. It is not 
the purpose of this Letter to enter into the debate regarding 
the relative merits of each of the specific detailed models 
that have become available1, but rather to provide an 

assessment of one of the underlying equations which is 
often incorporated (implicitly or explicitly) into such models: 
the equation of Jander [3], Eq. 1, used to describe the rate of 
consumption of a solid precursor grain during a chemical 
reaction process such as hydration: 
 
𝑘𝑘
𝑅2

= �1 − (1− 𝛼)1/3�2    (1) 
 

where k is a constant, t is time, R is the initial radius of a solid 
reactant particle (e.g. a cement grain), and α is the fractional 
degree of reaction. 
The Jander equation is used to describe the rate of retreat of 
the surface of a partially reacted spherical solid particle, 
where the rate-controlling step is the diffusion of reactants 
through a product layer to an interface at which an 
(assumed instantaneous) reaction takes place, the product 
layer directly replacing the space filled by the initial reactant 
particle with no change in volume. This is a classic example 
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of a ‘shrinking core reaction’ [4-6]. In the specific case of 
cement chemistry, this would correspond to the limitation of 
the reaction rate solely by formation of, and diffusion 
through, the inner product. The importance of this particular 
type of mechanism is the reason for the inclusion of the 
Jander model (although in a reorganised and rearranged 
form) in the now widely-followed formulation of Parrot & 
Killoh [7] to describe what is often identified as a diffusion-
controlled regime during the process of cement hydration. 
It has also been noted that Jander equation implicitly 
assumes that all reacting particles are mono-sized, and 
although corrections explicitly describing certain particle size 
distributions [4, 8] have been introduced, these have not 
seen widespread use in cement science. Other empirical 
adaptations of Jander model have been proposed and used 
in the literature, including either modification of the power 
law exponent from 2 to another value (introduced in [9] and 
used by various cements researchers since), or the use of a 
logarithmic time-dependence (introduced in [10] for 
glassmelting kinetics and also adopted by various cements 
researchers); these forms do not have a rigorous analytical 
derivation and so are of doubtful validity. 
The relevance of these physical assumptions to the case of 
cement hydration has previously been called into question 
[11], and will undoubtedly vary depending on the specific 
timeframe, and type of cementitious material, being 
modelled [7]. There is increasing evidence that a pure 
diffusion controlled model is not likely to give a realistic 
description of cement hydration processes, particularly at 
earlier age, as interfacial and aqueous-phase processes are 
also influential in determining reaction rates. However, at a 
more fundamental level and even if the underlying 
assumptions were taken to be valid, the Jander approach is 
itself flawed, and this is the topic of the current Letter. It is 
also noted that other authors have provided discussion 
along these lines including in the specific context of gas-solid 
reactions in metallurgy [4, 12], and for purely solid-state 
reactions relevant to pharmaceuticals [13], but the 
continued usage of the Jander equation by construction 
materials scientists appears to raise the need for its 
discussion in a topic-specific journal. 

 Derivation of the Jander equation, and a 2
(correct) alternative: Ginstling-Brounshtein 

The derivation of the Jander equation commences with the 
assumptions embodied in Fig. 1. 
Based on these assumptions, and 𝑦 as the thickness of the 
product layer, the diffusion-controlled mechanism requires: 
 
𝑑𝑑
𝑑𝑑

= 𝐾
𝑦

      (2) 

 
where 𝐾 is a constant which effectively incorporates physical 
and chemical parameters. This can be integrated to yield: 
 

𝐾𝐾 = 𝑦2

2
      (3) 

 

The extent of reaction of a spherical particle, α, is then 
defined according to Fig. 2. 
The fundamental error in the Jander [3] formulation then lies 
in the next step, where the substitution of α defined in 
spherical coordinates (Fig. 2) is made into Eq. 3 which was 
derived in Cartesian coordinates. This substitution, which 
neglects the surface curvature, uses Eq. 4: 
 
𝑦
𝑅

= 1 − (1 − 𝛼)1/3    (4) 
 

which when substituted directly into Eq. 3 (and setting 
𝑘 = 2𝐾 for simplicity), yields Eq. 1, the Jander formula [3].  
To avoid this erroneous substitution, the integration must 
instead be carried out in spherical coordinates, i.e. with full 
consideration of surface curvature. Eq. 2 should then be 
replaced by Eq. 5 [4]: 
 

−𝑑𝑑
𝑑𝑑

= 𝑘′

6
� 𝑅
𝑟(𝑅−𝑟)

�    (5) 

 

 

 
Figure 1. Depiction of the assumptions which are required for the derivation of the Jander equation, and the coordinate y (position of reaction 
interface) as used in the mathematical derivation. 
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Figure 2. Definition of the extent of reaction (α) for a spherical 
particle. 

Integration of Eq.5 yields Eq.6: 
 

𝑟2 �2𝑟
𝑅
− 3� = 𝑘′𝑡    (6) 

 

Using the definition of α from Fig. 2 in Eq.6 then yields the 
correct description of the particle-fluid reaction assuming 
rate control by diffusion through a product layer with 
product volume equal to initial particle volume, known as 
the Ginstling-Brounshtein equation, Eq. 7 [14]: 
 
𝑘𝑘
𝑅2

= 3 − 2𝛼 − 3(1− 𝛼)2/3   (7) 
 

 Why is this important? - comparison between 3
the Jander and Ginstling-Brounshtein models 

Fig. 3 shows a comparison between the predictions of the 
Jander and Ginstling-Brounshtein models. These models are 
generally fitted to extent of reaction vs time data, and so to 
replicate this process while giving a comparison of the 
models on a realistic basis, they are presented in Fig. 3a 
normalised to match the times required to reach specified 
extents of reaction (50, 75 and 100%) between the two 
models. The parameterisation process here is therefore 
essentially the equivalent of taking a single extent of reaction 
‘measurement’ and fitting both models to that data point, 
then observing the differences between the models at all 
reaction extents other than the one used in fitting. Sharp et 
al. [15] have previously presented this type of analysis of the 
Jander, Ginstling-Brounshtein and other kinetic equations 
based solely on matching the time to 50% reaction; the 
comparison presented here at different reaction extents 
provides additional insight into the differences between the 
models, and the pitfalls which may be encountered in 
parameterising them for practical use. 

This method of presenting the models shows that the main 
differences between the kinetic predictions of the two 
models occur at higher reaction extents. This is the most 
evident when the models are parameterised to give equal 
times to 100% reaction (grey dashed vs grey solid line in 
Fig. 3a); in this case, the predictions for the time required to 
reach intermediate reaction extents (e.g. 50% reaction) 
differ by more than 100% from the Jander to the Ginstling-
Brounshtein model. The divergence becomes less notable at 
intermediate extents of reaction when the models are 
parameterised using equal time to either 50% or 75% 
reaction (solid and dashed black lines in FIg. 3a, respectively); 
in such cases, the predictions of both models are rather 
similar up to a reaction extent of ~80%, but diverge from 
each other significantly after this. The reason for the 
divergence between the models at high extents of reaction is 
related to the geometric errors in the formulation of the 
Jander model, where both the area and the radius of 
curvature of the reaction interface become much smaller as 
the solid reactant is consumed and replaced by a thickening 
product layer. The neglect of the effects of this curvature is 
therefore more critical at these higher extents of reaction, 
and the rate of consumption of the final 20% of the solid 
reactant becomes very markedly different between the two 
model formulations. 

 

 
Figure 3. Comparison of the Ginstling-Brounshtein (G-B) and Jander 
equations: a) normalising each model to give constant times to 50%, 
75% and 100% extents of reaction; b) expansion of a) in the region 
of low α. 

 

b) 

a) 
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Fig. 3b provides an expansion of the low-α region of Fig. 3a, 
showing that there is in fact rather little difference between 
the predictions of the two models below 20% reaction 
extent (α = 0.2), as long as the parameterisation is 
conducted so that the two models are parameterised using 
data for 75% reaction or less. However, the fundamental 
principle that it is better to use an equation that is 
analytically correct than one that is not, and the negligible 
extra complexity of the Ginstling-Brounshtein expression 
compared to the Jander model in terms of inclusion in a 
model code, would both support the use of the Ginstling-
Brounshtein model [14] as a preferred description of cement 
grain consumption during hydration, if the assumptions of 
diffusion control, constant volume, and solely inner product 
formation are to be retained. These assumptions themselves 
have been (rightly) criticised as oversimplifications of the 
actual process of cement hydration [2], but in instances 
where it is desirable to build a model from this simplified 
starting point, it is at least necessary to build it using 
mathematically correct equations. 

 Consequences, recommendations and 4
conclusions 

It has previously been proposed by Cable [16], writing in 
defence of the Jander model, that the model was originally 
formulated only to describe low extents of reaction, and 
Fig. 3b does show that fitting the model solely in such a 
range would give results that are likely to match those of the 
Ginstling-Brounshtein model to within experimental 
uncertainty. However, the original Jander paper [3] does 
present experimental data and model fits for extents of 
reaction exceeding 80%, which calls this proposal into 
question. 
The extents of reaction of blast furnace slag and fly ashes in 
practical cementitious blends (w/c 0.40; replacement levels 
30-40%) have been determined by multiple techniques in a 
recent RILEM round robin test [17]; at 90 d, slag had reacted 
around 40-50% and fly ashes 20-30%. According to the 
literature survey of Zeng et al. [18], the extent of cement 
hydration at this age and w/c ratio would be expected to be 
around 70-80%. Thus, based on the findings presented in the 
previous section, it may be expected that the fitting of either 
the Jander or Ginstling-Brounshtein models to extent of 
reaction data obtained at 90 d or earlier for such materials 
would give similar predictions of reaction rates during this 
timeframe. However, there will be instances where much 
higher extents of reaction are important within meaningful 
timeframes: Portland cement hydration beyond 12 months, 
or blending of cementitious systems with silica fume, can 
lead to extents of reaction (of one or more components) 
that exceed 90% (α = 0.90). Any application of the Jander 
model to such cases will introduce severe errors. 
Giess [19] also conducted a comparative analysis of the 
Jander and Ginstling-Brounshtein models, up to α = 0.94, 
and applying the Arrhenius temperature-dependence 
relationship to calculate fundamental rate constants from 
the model parameters. The use of the Jander equation was 

also seen to lead to an error of as much as 20% in the 
extracted rate constants, particularly at higher extents of 
reaction. 
A further level of development beyond the Ginstling-
Brounshtein approach was provided by Vallensi [20] and by 
Carter [12], who each derived equations which account for 
both curvature of particle surfaces and the potential for 
formation of a reaction product which does not fill exactly 
the same space as the original unreacted solid grain. The 
formulation of Carter [12] presents this in a more user-
friendly manner, Eq. 8:  
 
𝑧 + 2(1− 𝑧) 𝑘𝑘

𝑅2
= (1 + (𝑧 − 1)𝛼)2/3 + (𝑧 − 1)(1 − 𝑥)2/3 (8) 

 

where 𝑧 is the ratio of the specific volumes of the product 
and reactant; this is a key parameter which has also been 
used in microstructurally-based models of cement hydration 
[21] and can thus be relatively readily obtained from the 
literature. However, this model does not enable any 
discrimination between processes taking place in inner and 
outer product regions. For the specific case of cement 
hydration, Taplin [22] also derived (and then further 
developed in subsequent publications) a set of equations 
involving rate control by diffusion through both inner and 
outer product regions, which can be reduced to the 
Ginstling-Brounshtein model in the limit of low influence of 
the outer product [11].  
Xie and Biernacki [2] have described in detail the 
development of many other models based on different sets 
of assumptions about controlling mechanisms, geometry 
and reaction product formation; the available models have 
gained in sophistication (but not always in clarity regarding 
the underlying mechanisms) in the past decades as 
computing power and the ability to store and manipulate 
three-dimensional reaction simulation snapshots have 
improved. However, these models are usually based at a 
fundamental level on simple analytical expressions 
describing the reaction rate and mechanism associated with 
each individual cement grain as it hydrates, and the mode 
and location of growth of the hydrates. It is therefore 
essential that the underlying physicochemical processes are 
captured as accurately as is realistically possible. For this 
reason, the key conclusion of this Letter is that the Jander 
equation is not suitable for use in describing cement 
hydration, even if the assumption of diffusion control is to be 
retained, either as a stand-alone model or as an 
underpinning component of a broader model structure, as it 
is derived from a fundamentally flawed mathematical 
derivation. 
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