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Abstract

The massive scale of concrete construction constrains the raw materials’ feedstocks that can be considered — requiring both universal abundance but also
economical and energy-efficient processing. While significant improvements— from more efficient cement and concrete production to increased service
life — have been realized over the past decades through traditional research paradigms, non-incremental innovations are necessary now to meet
increasingly urgent needs, at a time when innovations in materials create even greater complexity. Data science is revolutionizing the rate of discovery and
accelerating the rate of innovation for material systems. This review addresses machine learning and other data analytical techniques which utilize various
forms of variable representation for cementitious systems. These techniques include those guided by physicochemical and cheminformatics approaches
to chemical admixture design, use of materials informatics to develop process-structure-property linkages for quantifying increased service life, and
change-point detection for assessing pozzolanicity in candidate supplementary cementitious materials (SCMs). These latent variables, coupled with
approaches to dimensionality reduction driven both algorithmically as well as through domain knowledge, provide robust feature representation for
cement-based materials and allow for more accurate models and greater generalization capability, resulting in a powerful design tool for infrastructure
materials.
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1 Introduction systems is critical to accelerating the pace of innovation.
Along with reducing costly and time-consuming iterative
testing, data science can resolve economic and sustainability
constraints. Data-driven engineering can also optimize
conditions to address challenges in engineering such as
producing highly sustainable materials and improvements in
urban infrastructure [2]. Machine learning (ML) represents
a diverse collection of powerful algorithms utilized to identify
relationships in data, allowing for modeling and optimization
of complex systems.

The increasing rate of concrete placement in recent decades
— now at nearly 3 tonnes/per person/year — has intensified
pressure to further reduce the environmental impacts of this
essential material while providing growth in global
infrastructure necessary to meet the needs of a growing and
increasingly affluent population [1]. The massive scale of
concrete construction constrains the raw materials’
feedstocks that can be considered — requiring both universal
abundance but also economical and energy-efficient
processing. This ubiquity and the necessity of concrete
infrastructure prompts the need for increasing innovation to
address the global challenge of meeting societal needs in the
most sustainable and economical ways possible. While
significant improvements— from more efficient cement and
concrete production to increased service life — have been
realized over the past decades through traditional research
paradigms, non-incremental innovations are necessary now
to meet increasingly urgent needs, at a time when
innovations in materials create even greater complexity.

Early ML approaches in cement and concrete research came
through the utilization of artificial neural networks (ANNs), a
“black box” algorithm that uses statistical inference in the
form of a series of layers with weight-optimized nodes to
establish relationships between composition (input features)
and material properties (objectives). In 1998, Yeh et al. [3]
applied an ANN on a collection of 1030 concrete samples
from 17 data sources, where the compositional proportions
of cement, supplementary cementitious materials (SCMs),
aggregate, water, age, and admixture were features used to
predict compressive strength. With a coefficient of
Transition from approaches based on experience and determination (R?) slightly higher than 0.90 on both the
intuition to data-guided approaches in advancing engineering training and testing sets, the model outperformed traditional
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regression analysis. Numerous ML algorithms have since
been applied to this published dataset comparing how well
their algorithm can predict compressive strength [4].

In 2001, Haj-Ali et. al [5] applied an ANN to predict sulfate-
induced concrete expansion as a function of water to cement
ratio (w/c), cement GA content, and time on a historical
dataset of over 8,000 points from 51 different mixtures,
tested over 40 years. Although the model improved upon
existing analytical equations, it predicted expansion values as
much as 75% lower than the actual expansion values when
applied to the test set. While an approach to improving ML
algorithms is to increase the sample size, in the case of long-
term or historical data, such approaches are impractical. This
shows the limitations of data-centric approaches, where a
model can only perform well if it is tasked with predicting
behavior already displayed in the trained data set. The
emergence of new materials, which lack historical
performance data, highlights the importance for these
models to incorporate physical and chemical features outside
the traditional compositional space.

The commonality among these approaches is that the input
variables are all based on the compositional space of the
cement-based materials. Training on the compositional space
hinders both interpretability and generalizability of the
model. For example, while training on the Yeh dataset, Dutta
et. al [6] found a Gaussian process regression (GPR) model
had a coefficient of correlation (R) on the test set of 0.95, a
root mean square error (RMSE) of 0.06375, and a mean
absolute error (MAE) of 0.04292. While these are typical
values of a high-quality model, sensitivity analysis indicated
that ‘cement content’ was the most important factor in
determining compressive strength, which was already well-
known. This observation, however, provides no
microstructural or chemical insight into the development of
strength, and the model could not be used to predict changes
due to different cement sources. Further, current research
remains focused on predicting concrete strength, even
though the new information gained from these studies is
marginal. Ouyang et. al [7] showed that the sample size of a
dataset reaches a threshold after which there are marginal
gains to the accuracy of the model for predicting compressive
strength. While it is an encouraging find to discover that tens
of thousands of samples are not needed to develop a more
accurate model, their analysis found a maximum R? of only
0.62, a minimum mean absolute percentage error (MAPE) of
8.74%, and a minimum RMSE of 4.37 MPa in four models
studied.

Apart from predicting compressive strength on Portland
cement mix designs, others have modeled the effect that
SCMs, particularly fly ash, have on hardened cementitious
properties, such as electrical resistivity, compressive strength,
chloride resistance, expansion caused by alkali-silica reaction
(ASR), and ion diffusivity [8-15]. ML has also been used to
attempt to screen the reactivity of fly ashes based on their
network topology [16]. However, the supply of high-quality,
ready to use fly ash is diminishing as energy supply shifts from
coal-fired power plants. As a result, the usefulness of these
models is limited to however long these fly ashes remain a

main source of SCMs in construction. Cement-based
materials can greatly change their properties due to slight
changes in the feature space, such as when a new SCM is
introduced. These models are inherently unable to generalize
to other classes of SCMs, such as clay-containing materials,
which are one of the only SCMs available to meet the long-
term demands of SCMs in the concrete industry [17]. Because
of this, models that incorporate a wide range of potential
SCMs are needed to truly be useful in the future design of
cementitious structures.

A central goal in cementitious materials is the ability to design
them to meet a diverse — and often competing - set of
performance criteria using mineral feedstocks characterized
by specific composition, particle size, and reactivity that is of
function of these parameters but also a function of
processing, as well as their combined use and the availability
of water and other reactants. Algorithms parameterized by
these variables would be specific to the materials in the
training set as would the predictions. Design approaches that
are based on machine learning but generalizable across a
disparate range of feedstocks are critically needed. While
traditional ML can successfully model datasets consisting of
10,000’s of unique samples, smaller datasets require
embedded domain knowledge to improve ML modeling [18].
Although many ML models for cement-based materials have
developed and trialed new algorithms for property
prediction, one of the most important factors in developing a
successful ML algorithm is domain-specific feature
engineering [19]. This paper reviews emerging ML and
statistical approaches for predicting performance of
cementitious systems relying on smaller experimental data
sets and feature representation informed by domain
knowledge of underlying chemistry, physics, and engineering,
which represent a significant advantage to training over
existing approaches.

Domain-specific feature engineering can be used to represent
cement-based materials, as shown in Figure 1. To
demonstrate the range of applications of this approach, four
example investigations are reviewed here. First, an
Hierarchical Machine Learning (HML) representation for
workability allows for the design of a superplasticizer
specifically for metakaolin-modified cement. Second, a
cheminformatics representation of chemical admixtures for
calcium sulfoaluminate (CSA) allows for the virtual screening
and identification of new set retarders. Third, linkages
between property, structure, and performance (PSP) are
utilized to develop microstructural understanding of
diffusivity in cement pastes, relating composition to
durability. Finally, change-point detection is used to
statistically determine if a candidate material undergoes a
pozzolanic reaction.
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Figure 1. Latent variable representation of cement-based materials (top)
can be modeled and optimized through data science techniques (middle)
to develop non-incremental innovations and meet global goals for
sustainable development (bottom).

2 Latent variables using HML

In HML, compositional parameters are represented in the
bottom layer of the model and are related to a middle layer
of physics-informed, latent features. This embedding of
physicochemical equations allows HML to learn on system
properties as opposed to extensive testing over broad
compositional spaces, thus greatly reducing data
requirements compared to conventional ML [20, 21]. For
example, Bone et. al [22] utilized HML to physically relate ink
concentration and print parameters to viscosity, shear rate,
and proportionality in a model to predict and optimize print
fidelity in 3D printed biopolymers. Similarly, Menon et. al [23]
predicted the Young’s modulus of polyurethanes through
relating the molecular composition to a middle layer of
physicochemical properties utilizing stochastic simulation and
molecular modeling.

A major challenge in incorporating minimally processed
minerals, such as calcined clays, in cementitious binders is
understanding and addressing their tendency to decrease
workability. Clay behavior in suspension is sharply affected by
solution concentration [24], such as the pore solution in
cement-based materials. As a result of their physical and
chemical characteristics, calcined clays produce sharp
reductions in flow, which can alter not just rheology but also
hydration kinetics, microstructure, and durability [25]. Each
are, in turn, affected by chemical admixtures; if those
admixtures are not tuned to interact with calcined clays —i.e.,
direct application of admixtures developed for ordinary
Portland cement (OPC) — unintended admixture-mineral
interactions occur, including adsorption and absorption
within the clay structure, leading to unpredictable variations
in important qualities like mineral dispersion, kinetics of

cement hydration and pozzolanic reaction, set time and
strength development [26, 27].

To bridge the relationships between experimental variables
and system properties, solution-based forces (viscosity 71
and osmolality ) and particle-based forces (electrostatic
{and electrosteric s) as well as the coupling between solution
and particle forces, are determined by the extent of
adsorption @ and the polymer chemistry. These form the
middle layer. Note that in this study [28], the cement, mineral,
and water variables were all held fixed and the only free
variables were those of polymer chemistry, as shown in Figure
2.
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Figure 2. lllustration of interactions of superplasticizers in cement
paste depicting both adsorbed and free polymers (top). HML
representation of how dispersant chemistry determines the flow, or
workability, of cement paste, including effects on both particle and
solution characteristics (bottom). Note that in this preliminary study,
the cement, mineral, and water variables were all held constant so
the final model is only parameterized by polymer chemistry. The HML
algorithm requires knowledge of all forces and surrogate physical
measurements to provide estimates of their values. This allows it to
make accurate predictions based on extremely small training sets but
can make it challenging to implement for highly complex materials.
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The approach in HML is to treat these underlying forces as
latent variables but estimate their effects through additional
experimental measurements or theoretical models. Based on
estimates of these forces in polymer solutions or dilute
suspensions, the HML algorithm employs statistical learning
to determine which forces and combinations of forces are
responsible for the variations in material properties. As a
proof-of-concept, this design approach was attempted for
superplasticizing chemical admixtures for blends of relatively
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pure calcined clay (i.e.,, commercially sourced metakaolin)
and OPC. A training set composed of behavior of the
interaction of pastes and slurries with just seven commercial
water-reducing admixtures was used to train the algorithm.
Polymers in this training set were the solid polymer products
after dialyzation and lyophilization of commercial
superplasticizers or dispersants synthesized via radical
polymerization. The flow (S) of the paste was expressed as a
2"-order polynomial in the variables representing the
underlying forces using the Least Average Shrinkage and
Selection Operator (Lasso):

Suk—pc = 1.117 — 0.55¢ + 0.36{syx + 0.125pc (1)

Interpretability of the predictions is an important feature of
HML, which is accomplished through analysis of the
parameterization of the system properties in terms of the
underlying forces. Here, the term with the largest coefficient,
which the models predicted as dominating the response, was
the effects of the polymer on solution viscosity 7, with the
positive sign indicates that increasing the viscosity would
result in an increase in the flow of the paste, a result that
appears counterintuitive. (Other important forces were the
effects on particle zeta potential ¢ and the electrosteric
interactions involving metakaolin syx and Portland cement
spc.) However, when these forces were represented in terms
of their composition dependences, a global maximum in the
flow of the paste was predicted to occur with a polymer
having a complex combination of chemical functional groups,
which could then be synthesized and tested.

- metakaolin-

portland cement
portland cement

Figure 3. The random copolymer based on SS, MAA, and PEGMA
predicted by HML to maximize the slump of MK-OPC cement paste
(top). This superplasticizer was found to be specific for MK-OPC
blends and did not significantly plasticize OPC paste (bottom), unlike
other PCE superplasticizers whose effects displayed the opposite
trends from OPC to MK-OPC.

The outcome of this work is that the trained HML algorithm
predictions were used to guide the synthesis of the random
copolymer with a molar composition of 50% styrene

sulfonate (SS), 25% methacrylic acid (MAA), and 25%
poly(ethylene glycol) methacrylate (PMA). The results are
depicted in Figure 3 [28]. It had three unexpected attributes:

1. It was specific for metakaolin-Portland cement blends,
improving their flowability, but had no effect on the
workability of ordinary cement pastes.

2.  Only 8-10% of the polymer adsorbed to the particle
surfaces, indicating that its mechanism was not based
on tuning particle-particle interactions.

3. It had an intrinsic viscosity that was nearly 20x greater
than PCE, suggesting its mechanism of plasticization
was through solution-based forces, in contrast to
conventional water-reducers developed for OPC
systems.

This application demonstrates that while HML can provide
novel predictions and physical insight in optimizing complex
systems based on small datasets, it requires analytical
representation of all latent variables that drive system
responses and surrogate physical measurements to estimate
them for the model to be effective.

3 Cheminformatics approaches

Through efficiently encoding the molecular architecture of
admixtures, cheminformatics allows for the comparison of
similarity in molecular structure to function, and, as
demonstrated in this application, this approach can be used
to streamline chemical admixture development.
Cheminformatics is a methodology to represent chemical
structure as a vector, which in turn can be related to function,
facilitating design of molecules with intended functionality.
Cheminformatics approaches have been utilized for such
tasks as predicting the glassy transition temperature of
polymers [29, 30], drug discovery [31], and improving
guantum mechanical calculations for molecules [32]. A typical
representation is shown in Figure 4, where each group on the
molecule is assigned a binary integer to represent if the group
is present or not. Extensive folding (where the encoded
information on each bit is increased) and filtering (an
algorithmic reduction in the feature space, such as through
the utilization of Lasso Regression) methodologies can be
applied in order to reduce the feature space to be less than
the number of tested samples(i.e., 23 distinct admixtures)
[33].
o]

b
OH F“\)!HO/CLH\OH
I
1101
Molecular
Fingerprints

Figure 4. Representation of a binary fingerprint for utilization in
cheminformatics.
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While OPC has been the most widely used cement historically,
alternative binder chemistries are increasingly important in
finding innovative solutions for sustainable development and
new admixtures will be needed to broaden their practical use.
Calcium sulfoaluminate (CSA) cements contain no tricalcium
silicates in clinker, reducing the embodied CO, compared to
OPC, but leading to rapid reactivity, including very short set
time. To prolong CSA hydration, set-retarding admixtures are
commonly introduced to the formulation. Set-retarding
admixtures include a diverse range of chemistries which
require innovative methodologies to handle both the feature
representation of these molecules, along with availability of
only sparse datasets. The leading retarder for CSA cements is
citric acid, which here extended the set time 165 minutes at a
dose of 1% by weight of cement, but its cost has prevented
broader adoption. Identification of alternative retarding
admixtures by chemiformatics exemplifies the utility of this
approach in accelerating innovation in a complex, and
incompletely understood, cementitious system.

In this application, a library of small-molecule retarders that
featured carboxylate, sulfonate, and phosphono chemistries
was tested to assess their effect on hydration kinetics and set
time. In the training set, it was observed that species with
combinations of anionic and polar functional groups could
impart retardation times similar to that of citric acid.
Molecular fingerprints of the compounds in the training set
were used to train predictive models, and it was found that
the extended connectivity fingerprint (ECFP) provided the
most accurate predictions with an R? of 0.98 and an RMSE of
26 min. While not commercially available, the model
predicted that (3-(formylhydroxyamino)-1-propenyl)
phosphonic acid would have a set time of 183 minutes. The
commercial compound glyphosate was also in the library and
predicted to have a set time of 61 +/- 26 min.
Experimentally, glyphosate imparted a set time of 55 minutes
at a cost that is competitive with citric acid.

This cheminformatics methodology can either virtually screen
existing molecules with constraints on cost (or other criteria)
or guide the design of novel structures to produce more
efficient admixtures. Although the research presented here
was designed for a specific CSA system for only carboxylate,
sulfonate, and phosphono chemistries, the same principles
can be extended to other types of cements, blended cements
and other admixtures. For example, cheminformatics has
been applied in the molecular design of shrinkage reducing
admixtures for Portland cement [34], and can be extended to
superplasticizers, viscosity modifiers, or corrosion inhibitors,
among many others, including in a broader range of binder
compositions.

4 Process-structure-property linkages

To connect materials science to engineering properties,
process-structure-property (PSP) linkages can be used.
Material informatics workflows allow for the identification
and quantification of microstructural latent variables which
influence the material properties of interest [35]. Once
identified and quantified, the most salient material
parameters that correlated with material properties can be

used in the creation of PSP linkages. Similar to the current
state of modeling cement-based materials, advanced
structural metals had been represented as inputs through
elemental composition and phase volume fractions.
However, these 1-point statistics do not account for the
significant effects of the surrounding local microstructures.
Multiphase systems are now increasingly accounted for
through 2-point, or n-point, statistics to allow for PSP linkages
[36].

The methodology in creating these process-structure-
property linkages is shown in Figure 5. As explained by the
single void dissolution kinetics (SVDK) model [37], the
diffusivity property in cement pastes governs the rate of air
void saturation. The SVDK model is used to describe the
saturation kinetics of the air void and the significance of
transport mechanisms in the microstructure. In particular, it
can determine how water enters air voids for surrounding
capillaries based on the diffusivity. As a result, diffusivity
becomes the property of interest in the process-structure-
property linkage approach in predicting time to critical
saturation. Critical saturation is an important concept in
understanding likelihood of damage due to freezing and
thawing cycles in porous, brittle materials [38]. To accomplish
the modeling of the diffusivity property, a database consisting
of 349 samples of various water-to-cement ratios and
hydration times as the processing parameters was modeled
using NIST’s Virtual Cement and Concrete Testing Laboratory
Consortium (VCCTL) software [39]. Corresponding to each
combination of the processing parameters, a diffusivity and a
structure were simulated and collected [40]. The structure
was evaluated using 2-point statistics and then the
dimensionality was reduced using principal component
analysis. The principal components were then used in a
Gaussian process regression (GPR) model to infer the
diffusivity. A GPR model was selected because the model
form was initially unknown, the dataset was small, and a lack
of availability of prior time-series information to inform the
model [41].

The simulated microstructures were first simplified using tri-
phase segmentation. As shown in Figure 5, instead of the 30+
phases present in the initial database structures, three phases
were chosen to represent the microstructures: water/pores,
hydration products, and unhydrated cement grains. Two-
point statistics were used to determine spatial features in the
microstructure that correlate strongly with the diffusivity
property and is used to describe the structure in high
dimensions. The 2-point statistics representation of the
various microstructures output many more features than
there were data points, creating a sparsity problem. To
overcome this, the microstructural feature space was
reduced using principal component analysis. The first three
principal components were chosen to describe the 2-point
statistics because they were able to retain 99.9% of the
variance [41].
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Figure 5. Workflow of the process-structure-property linkages to model time to critical saturation in cement pastes [41].

The first three principal components are plotted along with
the two processing parameters in Figure 6 [41]. As seen in the
figure, the three principal components that describe the
microstructures are easily separable and distinguishable as a
function of the processing parameters: water-to-cement ratio
and hydration time.

Finally, the process-structure-property linkages were made
using GPR models. The process parameters of water-to-
cement ratio and hydration time were used to predict each of
the three principal components. The three principal
components were then used to predict the diffusivity
property. As previously discussed, the predicted diffusivity
property can be implemented in the SVDK model to give time
to dissolution and then correlated with the controllable
process parameters. Figure 7 [41] shows the outcome of the
combination of these models where the time to full
dissolution can be described as a function of the processing
parameters. In particular, Figure 7 shows the crucial finding
that for hydration times above 15 days, the time to saturation
doubles for every 0.05 decrease in the water-to-cement ratio
over the range of 0.25 to 0.55.

Process-structure-property relations can predict properties,
and as a result, long-term material behavior. This research
demonstrates how PSP linkages can be applied to the design
of mixtures against freeze-thaw damage and how data driven
approach can also be applied toward other concrete
properties. Specifically, this work allows for the design of
materials from the processing stage to be able to
manufacture a desired property, which would prove
extremely beneficial for the design of novel materials and
mixtures durable in a range of environments.
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Figure 6. 3D visualization of the first three principal components to
distinguish between process parameters (a) water-to-cement ratio
and (b) total hydration time [41].
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Figure 7. The influence of processing parameters on time to full
dissolution using the SVDK model which shows that for hydration
times above 15 days, the time to saturation doubles for every 0.05
decrease in the w/c ratio. The processing parameters used to describe
the time to full dissolution are w/c ratio and total hydration time at a
fixed radius of air void (Rv) = 10 um, a normalized trapped mass of gas
(mi) = 1, contact angle (B) = 0 deg., and intrinsic permeability of
hydrated cement paste (k) = 102° m? [41].

5 Microstructure and Durability Representations

A novel method for rapidly and rigorously identifying reactive
materials is through surface resistivity measurements, which
in a previous study by Nadelman et. al [42] showed this
approach to capture how variations in binder compositions
using traditional pozzolans affect the microstructural
development in concrete over time. This work was extended
[43] to include ASTM C618 non-conforming materials and to
both non-accelerated curing and accelerated curing, at 23°C
and 38°C respectively. The elevated curing temperature was
chosen to investigate if the onset of the pozzolanic reaction in
Class F fly ashes, known to begin at around 28 days, could be
accelerated. Figure 8 shows results for four concretes of the
same mix design but with varying binder composition: one
neat OPC mixture (OPC) and three binary blends with 20%
cement replacement by mass by each of three SCMs (F, Y1,
BH1) were tested. F is an ASTM C618 Class F fly ash, and Y1
and BH1 are ‘off-spec’ fly ashes that are reclaimed from ash
ponds and do not meet C618 specifications. The premise is SR
time-series data could be used to distinguish between
intrinsic matrix densification caused by the presence of inert
fine particles from densification resulting from pozzolanic
reaction with portlandite, which varies over time depending
on the type of pozzolan, by a change in the time-series’ slopes.
Figure 8 presents a dashed line approximating when this
change in slope occurs, but to determine an unbiased and
absolute assessment of the age at which the microstructure
changes due to a pozzolanic reaction, the statistical technique
change-point detection was applied to the time series data.
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Figure 8. Time series surface resistivity data for four concrete blends
at two curing regimes: (a) 23°C and (b) 38°C with estimated onsets of
pozzolanic reactions. The blends had a 20% cement weight
replacement by the candidate fly ashes. F is an ASTM C618 Class F fly
ash, and Y1 and BH1 are off-spec fly ashes that are reclaimed from
ash ponds.

The determination of the onset of the pozzolanic reaction in
surface resistivity measurements as shown in Figure 9 has a
subjective component, lacking any statistical analysis, which
makes it challenging to implement in practice to identify new
SCM sources. To overcome this, an approach known as slope
change-point detection [44, 45] was applied on the processed
data, shown in Figure 9a. The goal of slope change-point
detection is to see if a stochastic process or time-series has
changed, usually using measurable parameters such as the
mean or variance. In this approach, surface resistivity for a
concrete mixture was measured from 1 to 56 days, and the
difference from that of the OPC mixture was calculated. The
resulting vector i = (1, ¥, .., ¥ss) denotes the residual surface
resistivity values between OPC and a mixture’s value in kohm-
cm. This is shown for the concrete mixture containing F in
Figure 9b.

The presence of a pozzolan is associated with the SR
becoming greater than the SR of the OPC mix, which
indicates reduced carrier concentration or mobility and
can be associated with improved durability. In this
analysis, to ensure that only positive change-points are
considered, the residual surface resistivity vector V; is
manipulated so that the resulting vector is §* = max(0, Vi),
which is shown graphically for the concrete mixture
containing F in Figure 9c.



R.T. Rios et al., RILEM Technical Letters (2021) 6: 140-149

147

0 1 1 1 1 1 1 1 1
0 7 14 21 28 35 42 49 56
b Age, days
6 -
5 F
e 4
§ 3
L2
=)
o 1
> 0
-1
2
C
6
5
o~
g4
S
~Z 3
+ /
1T /’:/
0 1 1 1 - 1 / 1 1 1 1
0 7 14 21 28 35 42 49 56

Age, days

Figure 9. (a) Unprocessed surface resistivity time-series results for
mixtures OPC and F, cured at 23°C. (b) Processed residual surface
resistivity values between mixtures OPC and F. (c) Processed residual
surface resistivity values from 1b to ensure that only positive change-
points are considered for mixture F in change-point detection analysis
[32].

The vector ;" for each material is then used in the slope
change-point detection procedure. Using this pre-processing
procedure for the OPC mixture, {ipc” would be a 56-length
vector consisting of zeros. With the pre-processed sequences
" for each material, the problem is reduced to determining a
slope change from the sequence for the OPC mixture, ¥ipc",
which would be the x-axis with slope equal to 0.

For each data point in each V" for each candidate material,
the generalized likelihood ratio test (GLRT) was conducted.
Using the GLRT approach, from one successive point to the
next, the maximum likelihood ratio, Ux:, was calculated as
shown in Equation 2.

— [Z§=k+1(i—k)37i]2
Uk't B z:1t=k+1(i_k)2 (2)

A change-point has occurred if for a given sequence, maXo«t
Uit is larger than a pre-set threshold value, b, which is
determined through Monte Carlo simulations of the test
statistic U+ The t corresponding to the maxo«<t Ukt > b is the
time, in days, of when the slope change-point has occurred.
Using this procedure, the results of slope change-point
detection are shown in Table 1.

Table 1. Results of slope change-point detection on processed SR data
at 23°C and 38°C. None indicates that no slope change-point was
detected.

Mix ID CP detected at 23°C | CP detected at 38°C
(days) (days)

OPC None None

F 30 2

Y1 None 10

BH1 None 6

Table 1 provides determination of pozzolanicity of both ASTM
C618 and off-spec materials. At elevated curing conditions, a
material’s pozzolanicity can be determined in as quickly as
two days, an enormous time advantage over the current
standard, ASTM C618, which requires 28 days of testing
before a determination can be made.

This data-driven approach on time-series experimental data
[43] allows the rigorous determination of changes in material
behavior in a quicker time frame than is the current industry
standard. This approach is transferrable to additional surface
resistivity data of emerging materials, which would promote
the use of novel materials in concrete, as well as to other
time-series measurements in civil engineering, such as those
related to durability.

6 Future directions and conclusion

Machine learning and other data analysis approaches provide
powerful frameworks for integrating physicochemical and
materials-engineering models of cementitious materials with
statistical learning. A diversity of material properties ranging
from rheology to microstructure and durability can be
predicted from material constituents. Here, through example
applications, machine learning and statistical techniques
were shown to enable the identification and design of
chemical admixtures, to link the composition of cement-
based materials to its resistance to saturation and
freeze/thaw damage, and to effectively screen new SCM
sources.

More broadly, these examples demonstrate the potential of
such data-driven approaches to transform cement-based
materials research, design, and specification. In research,
curation of and open access to data and metadata will be
critical in accelerating the translation of new knowledge from
the laboratory to practice. Platforms and data standards to
facilitate the integrated analysis of data from multiple sources
are desperately needed in this field. With depletion of
traditional materials feedstocks and with increasing
availability of alternative materials sources, a need exists to
reduce risk when designing concrete with emerging
materials. By combining existing and emerging knowledge of
materials performance, uncertainty in workability, strength
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development, and durability can be mitigated, increasing the
rate at which new, more sustainable materials can be
translated into practice. Finally, as materials and design
specifications transition from those based on prescription to
those based on performance, machine learning can be
beneficial. Cost of testing, along with managing risk and
responsibility, have been major impediments to increased
adoption of performance-based specification. Facilitated by
the use of standard test methods, machine learning can use
these existing vast data sets — linking materials compositional
parameters to performance — to reduce the amount and
duration of testing, resulting not only in cost and time savings,
but also increasing the industry’s ability to innovate while
mitigating risk.
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