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Abstract

The characterization of in-place material properties is important for quality control and condition assessment of the built infrastructure. Although various
methods have been developed to characterize structural materials in situ, many suffer limitations and cannot provide complete or desired characterization,
especially forinhomogeneous and complex materials such as concrete and rock. Recent advances in machine learning and artificial neural networks (ANN)
can help address these limitations. In particular, physics-informed neural networks (PINN) portend notable advantages over traditional physics-based or
purely data-driven approaches. PINN is a particular form of ANN, where physics-based equations are embedded within an ANN structure in order to
regularize the outputs during the training process. This paper reviews the fundamentals of PINN, notes its differences from traditional ANN, and reviews
applications of PINN for selected material characterization tasks. A specific application example is presented where mechanical wave propagation data are
used to characterize in-place material properties. Ultrasonic data are obtained from experiments on long rod-shaped mortar and glass samples; PINN is
applied to these data to extract inhomogeneous wave velocity data, which can indicate mechanical material property variations with respect to length.
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1 Introduction density, elastic modulus, thermal expansion coefficient,
specific heat, permeability, viscosity, etc.) that are important
for fundamental research and engineering design, and
furthermore may be used as criteria for the evaluation of
material integrity. Such material characterization is more
difficult with complex, inhomogeneous, or mechanically
nonlinear materials such as cement, concrete and rock where
properties vary as a function of space, time, stress state or
ambient environment; as a result, purely physics-based
models often fall short in application to construction
materials.

Real-world engineering and science phenomena are complex,
yet they can be simplified under some assumptions and
represented using appropriate differential equations. The
most appropriate and accurate differential equation for a
given phenomenon or behavior is called its governing
equation. This type of approach represents a “physics-based”
model, as opposed to a “data-driven” model that does not
consider any underlying physics or mathematics in its
solution. Here we present several important representative
differential equations that serve as governing equations to
simulate processes and behavior in the construction materials
field: Fourier’s law is used to model heat transfer problems;
Fick’s law is used to model transport or diffusion of ions
through a material; Darcy’s law is widely used to model fluid
flow in porous media; and Euler’s laws of motion are used to
describe mechanical responses of materials. Although
physics-based models may not perfectly represent a specific
real-word problem because of its complexity, they are
effective and broadly used because of the flexibility provided
by coefficient changes to account for varying environmental
or material conditions. When modeling engineering
problems, it often is important to understand or predict those
coefficients within the governing equations. For example,
those coefficients can represent material properties (e.g.,

The popularity of data-driven models has increased recently
because of the development of machine learning tools, access
to increased computational power, and ease of data
collection [1]. A key machine learning tool is the artificial
neural network (ANN) [2,3], which has universal
approximation capability [4—6] and has demonstrated
extraordinary results in image classification [7,8], time series
regression/prediction [9-11], and natural language
processing [12-14] applications. For example, the
performance of general object detection has improved
rapidly over time as shown in Figure 1 (a). Even for
complicated board games (e.g. Go and Chess), the
performance of ANNs is already superior to human ability
[15]. At the same time, the size and complexity of ANN
models have continuously increased: the total number of
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parameters of noted ANN models has increased dramatically
over time as shown in Figure 1 (b). Despite these
developments, ANNs still exhibit multiple drawbacks: (1) they
represent “black box” computations with no understanding
of internal processes, (2) they require tremendous amount of
training data, (3) they demand high computing power
requirements, and (4) they show comparatively poor
performance for unseen data (i.e., generalization errors or
overfitting problems) [16].
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Figure 1. (a) Results from the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) over a four-year period. The detection accuracy
increased from around 20 % to 70 % over a relatively short period of
time. (b) Trends of total number of parameters included in noted ANN
models (Data taken from [17]).

In order to address increasingly complex and difficult
engineering and science problems, models that combine or
fuse physics-based and data driven approaches have been
explored more recently. One example of this approach is a
“digital twin,” which is a model that represents a real-world
problem with additional virtual characteristics [18,19]. There
are three main components of a digital twin: (1) physical
object, (2) virtual object, and (3) connection between two

objects. A distinct characteristic of the digital twin model is a
seamless connection between the physical object and the
virtual object. Rather than relying on data or governing
equations, it is continuously updated with additional
collected data. It can thereby provide a more accurate and
versatile representation of the physical object. A more direct
combination of physics-based and data-driven models is
represented by physics-informed neural networks (PINN).
PINN is a relatively new technique among machine
learning/neural networks [20], although it is not a new
concept [21,22]. PINN is a type of ANN that includes physics-
based equations, usually differential equations, as prior
knowledge within the training/prediction process, while
conventional ANNs do not use prior knowledge or laws of
physics about the prediction target. Therefore, parameters of
conventional ANNs (i.e., weights and bias) are learned only
through training data. PINNs differ from conventional ANNs
in that they contain governing equations, in the form of
differential equations, and consider compatibility between
the equations and the training data. A more detailed
explanation of PINN will be provided in Section 2. Although
PINNs are starting to be applied to solve challenging
problems across a broad range of engineering fields,
applications in civil engineering, and construction materials in
particular, are limited [23,24].

The aim of this technical letter is to introduce the basic
structure and function of artificial neural networks (ANN) and
physics-informed neural networks (PINN) (Section 2) and to
highlight the potential of PINN to contribute to material
characterization tasks by exploring selected PINN-related
research work (Section 3) and finally by applying PINN to
specific wave propagation-based experimental data (Section
4). In the experimental work, inhomogeneous material
property variation is characterized by predicting the wave
velocity over space. Wave velocity is often used as a material
characterization parameter as it serves as a proxy for material

compliance because material Young’s modulus s
proportional to the square of the wave velocity.
2  Artificial neural networks and physics-

informed neural networks
2.1 Structure and function of artificial neural
networks

The basic structure of an ANN is shown in Figure 2. ANNs
consist of multiple layers of neurons, where the first layer is
called the input layer and the last layer is called the output
layer. The layers in between the input and the output layers
are called hidden layers. ANNs predict an output(s) based on
input data utilizing the hidden layer to do so. Figure 2 (b)
shows detail about the function of one neuron within the
hidden layer. Each neuron is represented by weights and
biases, often called neural network parameters. Once input
data are passed to a neuron, the neuron’s weights are
multiplied by the input data and summed and the bias is
added to the result. After that, the result is fed into an
activation function, which is a characteristic feature of ANNs.
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This process is expressed as

a=AMWTp+b) =A(2) (1-1)
a=A(w wi[))]+b) =A@ (1-2)

where p is the input vector, w and b the weight vector
and bias of a neuron, respectively, A the activation
function, z the argument of an activation function, and a
the output from the neuron. Usually a nonlinear activation
function is used, which can take the form of a hyperbolic
tangent, rectified linear unit, or sigmoid function; the choice
of a specific function depends on the application. An ANN can
also be expressed as

u = fy(p) (2)

where U represents the output values from the ANN (also
known as the predicted values with respect to target values)
and f, the ANN expressed as a function. Throughout this
paper, the hat symbol indicates predicted values. ANN
parameters (0) are usually learned using gradient descent
algorithms (e.g., stochastic gradient descent (SGD), SGD with
Momentum, Adam, etc.) [30-32] in an iterative training
process with the objective of minimizing the error between
the outputs of the ANN and the training outputs. This is
presented as

0,1 =0, —1Ve/(0,) (3)

where 7 isthe learningrate, 0,, learnable parameters such
as weight and bias in neurons, J the cost function, Vg the
gradient with respectto 0,and n the iteration number. The
cost function (also called the loss function) is the function that
quantifies the error between model outputs and expected
outputs. The choice of the cost function /| depends on the
application and structure of the ANN. Typically, mean square
error (MSE) and cross-entropy functions are preferred for
regression and classification applications, respectively. An
example cost function when MSE is used is given by

1 N
J® = 3> [F®) ~ foPO @

where N is the total number of training data, f(p;) = u;
the training output data corresponding to the training input
data p; or latent (or true) function, and fy(p;) = U; the
output from an ANN model corresponding to the training
input data p;.
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Figure 2. a) A basic ANN structure with one hidden layer and (b)
detailed computational process within one neuron.

2.2 Physics-informed neural networks

PINN is a form of ANN where physics-based equations (most
usually in the form of differential equation) are embedded
directly within ANN structure; these equations act as
regularization agents during the training process. In other
words, the parameters in PINN are tuned to comply with the
embedded physics-based governing equations. Because
PINNSs are closely related to differential equations, we define
a differential equation in general terms as

N[u[(p)] = (]).

pP= Px D¢,

P, €0, (5)
pt S [O! T]

where N[] is a differential operator, u the dependent
variable, and p the independent variable. If p contains
spatial and temporal data then it can be rewritten as
[Px DPt:] where py is spatial coordinate data, and p;
temporal data and Q denotes the spatial domain. Spatial
and temporal data are separated intentionally here to
distinguish spatial and spatiotemporal problems. Partial
differential equations (PDEs) usually contain initial and
boundary conditions to ensure the existence and uniqueness
of the solution, for example

u(p; t = 0) = h(py), px € Q (6-1)
u(p;x = py) = g(p), Px € 0Q (6-2)
px € O c RY, p: €[0,T] (6-3)

where t is time, T the upper bound of time-domain data,
and d the dimension of the spatial data, and h(py) and
g(p) are arbitrary functions. Egs. (6-1) and (6-2) represent
initial condition (IC) and boundary condition (BC),
respectively.
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The main characteristic of PINN is that physics-based
equations are embedded as prior knowledge; a conventional
ANN does not use any prior knowledge about data to be
trained or the target, so it is a fully data-driven model. In the
case of conventional ANNSs, all parameters (i.e., weights and
bias of each neuron) are randomly initialized and learned (or
tuned) to minimize the specific cost function that is defined.
Because conventional ANNs are fully data-driven models,
they usually require a great amount of training data to adapt
to a generalized problem. On the other hand, PINNs require
less training data when they are used for inverse problem
solving [33,34], and in some cases they do not need any
training data when deployed for forward problem solving.
Furthermore, PINNs are more robust and generic than
traditional ANNSs [35]. To achieve a specific objective using an
ANN, two different approaches are typically used. The first is
to build or design a specific neural network architecture, for
example a convolutional neural network [36,37], recurrent
neural network [38], or long short-term memory network
[11,39]. The second approach is to choose an appropriate loss
or cost function. Most of PINN applications take the second
approach. The physics-based equations are incorporated in
the cost function as

Ng
i=1

where L represents loss terms and N, is the total number
of loss terms in the cost function. The number of loss terms
varies depending on application. This cost function is different
from that shown in Eq. (4) that is used in a conventional ANN.
Typical loss terms used in PINN are given by

Ly == RGO (&-1)

1
L= )@@l 62

Ny
1
L= EZ"“"” — )P (83)
1 s
Ly = N—lem(pi) — fPOP (8-4)

where Ly is the loss from PDE residual, Ly the loss
between observed data and output values from PINN, L,
the loss from initial condition, Lz the loss from boundary
condition, and Ng, Np, N, Nz are the number of training
data used in each respective loss term. Note that not all PINN
applications use the full set of loss terms listed here. The form
of the residual (R) depends on the embedded equations in
the PINN model.

For example, if the embedded equation is the 2-D Laplace
equation, then the residual is given by

0% 02
R(p;) = ﬁfa(l’i) + 6_)/'2f0(pi) (9)

The input data (p;) used in Eq. (9), also called the collocation
points, must satisfy the physics-based equation. To calculate
the residual the dependent variable, which is the output of
PINN (fy(p)), is differentiated with respect to independent
variables, which are the input of PINN (p). This differentiation
is carried out using Automatic differentiation [40,41]. f*(p)
represents the given target values. Depending on the
application, the target values (f*(p)) can be either f(p),
which is a true function without error, or f,pservea(P) +
€(p), which is the summation of measurement and unknown
error.

PINNs can be used to solve a PDE, also known as the forward
problem, or to predict coefficients within embedded
governing equations, also known as the inverse problem;
more specifically, the inverse problem finds or extracts
features or model parameters from observed or measured
data. When PINNs are used to solve the forward problem, we
consider it to be “semi-supervised” learning because (1) the
training process requires both labeled and unlabeled data and
(2) a significant portion of the data is unlabeled data where
labeled data are readily obtained. When PINNs are used to
solve inverse problems, labeled data are required so it is
considered “supervised” learning. PINNs offer advantages
over conventional numerical techniques for the forward
problem: it is mesh-free so there is no discretization error and
the challenge of dimensionality is avoidable. Considering that
solving inverse problems is not trivial using conventional
methods, PINNs may provide effective solution approaches.

3 Material characterization related applications

Although the application of PINN in the construction
materials field is not yet common, several application studies
have been conducted. In this section, selected papers that are
directly or indirectly related to civil engineering or
construction materials fields are reviewed. First, fluid flow (or,
diffusion) related applications are considered. Tartakovsky et
al. [42] studied flow in porous media using 2-D steady-state
linear and nonlinear diffusion equations

V- [KE)Vp(x)] =0 (10-1)

and

V- [K(p)Vp(x)] =0 (10-2)

where K(x) and p(x) are hydraulic conductivity and
hydraulic head or capillary pressure, respectively. The main
objective of Tartakovsky’s study was to predict full K and p
fields from individual sparse measurements of K and p.
Essentially, Eg. (10-1) describes saturated flow in an
inhomogeneous medium while Eq. (10-2) describes
unsaturated flow in a homogeneous medium.
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To solve and predict the linear diffusion equation (Eg. 10-1),
the authors used two separate ANNs to predict K and p
individually. Each ANN had 3 hidden layers and 50 neurons
per layer. The number of hidden layers and neurons is usually
determined empirically, which was the case with
Tartakovsky’s work. The training data (or reference data)
were generated using the finite volume method. In addition
to 1024 uniformly distributed collocation points, 250 points of
hydraulic conductivity and 100 points of capillary pressure
were randomly selected and used for the training process.
The relative L, errors were 1.7 and 0.5 % for K and p,
respectively. The relative L, error is defined as || — ml||/
||m|l, where m is the quantity of interest and || ||, the
two-norm. When they solved the nonlinear diffusion
equation (Eq. 10-2), the reference data were generated using
a numerical solver (Subsurface Transport Over Multiple
Phases (STOMP) [43]). In this case, hydraulic conductivity
values were not provided and the relative L, error were less
than 1 % for both K and p. Additionally, the authors found
that the initial parameters (weights and basis) of the ANN
model have only minor effects on prediction results. Fuks and
Tchelepi [44] solved a forward problem concerning two-
phase transport in porous media using the 1-D Buckley-
Leverett model [45]. They well estimated water saturation
when there was no abrupt discontinuity (i.e., shock behavior)
in the data; however, they had difficulty in finding a solution
in the presence of a shock. By adding a diffusion term in the
model equation, the problem was alleviated. Yu et al. [46]
solved the diffusion-reaction equation using gradient-
enhanced PINN (gPINN). The diffusion-reaction equation
describes substance changes over time and space considering
reaction and diffusion. gPINN makes use of the fact that the
derivatives of the PDE residual (L) should be zero, which is
considered in the cost function (Eq. (7)). The results were
compared with the analytic solution and the relative L, error
for the solution was less than 1%. In addition, an inverse
problem was solved using a steady-state diffusion-reaction
equation with a space-dependent reaction rate term. The
reaction rate function was well predicted and gPINN showed
better performance than a conventional PINN.

Now we consider studies related to heat transfer. He et al.
[47] studied 1-D heat conduction using PINN. The governing
equation that they used is

aT 0%T
b_—F(x,t) =0, (11)

“E‘ 0x?
x,t €[0,1]

where T is the temperature and F(x,t) the heat source
function. At first, two forward problems were solved:
respectively Dirichlet and Neuman boundary problems.
When the coefficients of the governing equation, a and b,
were set to 1, the solution from PINN well matched the
analytic solution. However, when wood and steel material
properties were used, the conventional PINN model
produced large errors. After normalizing the time-domain
data and appropriately scaling the physics-based equation,
reasonably good results were obtained when compared with
numerical simulation results (ABAQUS [48]). The authors

claim that data normalization alleviates the gradient
vanishing problem. Next, three inverse problems were carried
out. The first inverse problem predicted the constant
coefficient a in Eq. (11) given b and F(x,t). The second
predicted the two constant coefficients a and b in Eq. (11)
given F(x,t).The third predicted the source termin Eq. (11),
which is e**2t, given a and b. The authors showed that
two techniques help to increase PINN’s performance: the skip
connection used in ResNet [49] and the adaptive activation
function [50]. Cai et al. [51] solved convective heat transfer
problems using PINN. In their model, the convection-diffusion
equation and incompressible Navier-stokes equation were
used. In their study the governing equations were given but
only partial boundary conditions were provided, which
represents an ill-posed problem. In their solution, sparse
measurements of temperature and velocity were provided to
a PINN to predict temperature, velocity, and pressure fields.
Rad et al. [52] used PINN to solve an alloy solidification
modeling problem. In their paper, the model consists of the
energy conservation equation, solute conservation equation,
and thermodynamic relations. The outputs of the PINN model
were temperature, solid fraction, and solute concentration.
The temperature predictions were compared with the results
from an open-source computational fluid dynamics software
platform (OpenFOAM). The solid fraction and solute
concentration predictions were compared with the exact
analytical solutions, where the PINN predictions matched the
analytical solutions well. The authors also analyzed the
optimal range of initial learning rate for the Adam optimizer
for this problem.

Finally, we consider solid mechanics related materials studies.
Haghighat et al. [53] predicted Lamé parameters (typically
represented as A and u) for a 2-D homogeneous elastic
plane-strain problem, which represents an inverse problem.
The training data were obtained from an analytic solution
where displacement, stress, and force were used as training
data sets. They applied PINN to solve this nonlinear problem
based on the von Mises elastoplastic constitutive model,
where vyield stress and Lamé parameters were predicted.
Bharadwaja et al. [54] solved a 2-D inhomogeneous and linear
elasticity problem. They considered an inhomogeneous
material where either internal voids or high elastic modulus
inclusions were included within a base solid material. The
PINN framework ‘Modulus,” developed by Nvidia, was used to
create PINN models. As Tartakovsky et al. [42] did, two
separate ANN models were used to predict displacement
and stress separately. The stress predictions from the PINN
model matched well with results obtained by a commercial
finite element software platform.

related to material
mechanical wave

4 Specific application
characterization using
propagation

In this section, we demonstrate how PINN can be used to

characterize material properties using mechanical wave
propagation data.
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The well-known linear wave equation, which governs
mechanical wave propagation in solids, is

0%u 0%u
Qe 12

where u is displacement, x space, and ¢, the
propagating wave velocity. Here the wave velocity is a
function of space and is proportional to square root of
Young’s modulus of the material. Our goal is to characterize
wave velocity variation along the length of inhomogeneous
samples. To enable this, wave propagation data were
collected over the length of two different samples. Because
wave velocity is proportional to the elastic modulus of the
material, prediction of the wave velocity over space can be
used to evaluate spatial variations in material integrity. In this
work, PINN was used as an inverse problem solver.
Considering that most PINN papers published to date
consider data obtained by numerical analysis or analytic
solution, the results shown here serve to show the potential
of PINN for handling experimental data.

4.1 Experimental setup and sample description

Two cylindrical rod samples were used in the experiments:
one is composed of borosilicate glass and the other of
portland cement mortar. Both samples are 25.4 mm in
diameter and 147 ¢cm in length. The glass sample is pristine
and ostensibly homogeneous without any obvious or known
damage. The mortar sample consists of two distinct sections
along its length: a “strong” matrix design with a water-to-
cement (w/c) ratio of 0.5 and a “weak” design with a w/c of
0.6, with a distinct boundary between the two mixtures that
exists at about one-third length of the sample. For both
mortar mixtures, the cement-to-sand ratio is 1/3 by mass.
Figure 3 shows the experimental setup from which wave
propagation data were collected along each sample’s length.
To generate mechanical (ultrasonic) waves in the samples,
piezoelectric (PZT) discs are attached to the flat end of each
sample. The waves generated by the PZT discs propagate
along the length of the samples and are detected using an air-
coupled transducer (ACT) positioned above the outer surface;
ACTs offer the advantage of not requiring physical contact
with the samples and the ability to collect large amounts of
consistent data quickly. A 1-D linear lead screw actuator was
used for the motion stage to control the position of the ACT
along the sample length. For both samples, ultrasonic signal
data were measured every 5 mm along the length of the
samples using a sampling rate of 12.5 MS/s. The distance (lift-
off) between ACT and the samples was set and maintained at
65 mm.

= ACT

Clamp

LLLLLARALRRS

motion stage

Figure 3. The mechanical wave measurement system: (a) a schematic
image that shows the entire measurement system and (b) detailed
view of the measurement system with the mortar sample.

4.2 Detail of PINN model

Figure 4 shows the PINN architecture used in this work. The
first layer is the input layer, which accepts two signal features:
space and time. It is common to normalize data to improve
convergence speed when ANNs are used. One drawback,
however, of normalizing data before feeding into a model is
that the physical meaning of the input data is eliminated.
Therefore, rather than using normalized input data, a
normalization layer is added into the architecture of the ANN
so that the model can retrieve original data values through
the process of back-propagation. The normalization layer
calculates the mean value and standard deviation with regard
to the input data before the training process begins. The
calculated values are stored in the normalization layer and
they are used to convert the input data set to have a mean of
0 and a standard deviation of 1, which is z-score
normalization. After that, two separate 1-D sets of scalar
input data are concatenated into one vector in the
subsequent concatenate layer. Then the normalized data are
passed into the fully connected layer network. As shown in
Figure 4, the network comprises a ‘Main network’ and other
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subnetworks. The main network is used to predict output
values (displacement) and other subnetworks are used to
predict coefficients of the embedded differential equation;
one subnetwork is used to predict wave velocity (cy), which is
the principal output value of interest. This latter subnetwork
considers spatial coordinate information so that the
prediction of the wave velocity is a function of the spatial
coordinate. Note that the true output values of the main
network (displacement) are only provided during the training
process, and those of the subnetwork (wave velocity) are not
provided. A total of 4 hidden layers, each with 40 neurons,
comprise the main network and 3 hidden layers, each with 20
neurons, comprise the subnetwork. The output value (i)
from the main network is double-differentiated with respect
to the input data (x,t). Finally, the differentiated values
(0241/0t?,0%1i/0x? ) are multiplied with corresponding
coefficients to calculate the residual of the implemented
physics-based equation. That residual is defined as

a4 21l
fR(X, t) = F—ég(x)ﬁ (13)

and the cost function used in this work is defined as
Iv v
J® = ﬁzlv*(pi) ~ fo @Ol + ﬁzlm(pi)lz (14)

where p =[x t]. The Adam optimizer is used in the
training process using an initial learning rate of 5e*. The
objective of using this PINN model is to predict the wave
velocity using the embedded equation and training output,
which is the displacement. The predicted wave velocity can
be related to Young’s modulus (E) and density (p) using the

equation V;, =/ E/p to monitor material compliance

Main network

changes along the long rod-shaped samples where V, is
the bar velocity and is considered to represent c;.

4.3 Experimental results and PINN predictions

Figures 5 (a) and (b) show mechanical wave propagation
measurement data for the glass and mortar samples,
respectively. Signal data were measured every 5 mm along
the length of the samples. All of the multiple wave
measurements are presented at once using the time-space
domain, where the amplitude of the received signal is
normalized to have values from -1 to 1 as represented by the
color scale. The signal amplitude from the ACT sensor is
directly proportional to the measured acoustic pressure.
When absolute values of displacement are not needed, the
small-strain, and harmonic wave propagation assumption
enables us to consider that the signal amplitude is
proportional to relative surface displacement. A 14-cycle tone
burst signal with a 90 kHz center frequency was used as the
excitation source for the glass sample, and 75 kHz center
frequency for the mortar sample. For both cases, the
excitation voltage to the PZT sender was 40 V. In both
material samples, coherent ballistic propagating wave fronts
can be observed without noticeable dispersion; thus, it is
reasonable to apply the simple 1-D wave equation here. In
order to reduce the number of training data, a time window
(250~350 ps for the glass data and 300~450 ps for the mortar
sample) was applied to the original data, and only that part of
the signal within the window was used. 20 % of the data were
randomly selected to be set aside and thus were not used for
PINN training; these data were later used to test the
performance of PINN with regard to unknown spaces. A total
of 61,299 and 91,924 data points were used for the glass and
mortar samples, respectively. Although the amount of data
may seem large, one training data set consists of only three
scalar quantities, so the absolute data set sizes are relatively
small at 500 and 740 kB, respectively.

9
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Input Normalization

[5.:@] [055 5@
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Automatic
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physics

layer layer layer layers layer  differentiation

equation

Figure 4. The architecture of the physics-informed neural network considering the inhomogeneous material case. The model consists of
multiple fully connected layers (main network and subnetworks). The main network is used to predict the output values, and the subnetworks
(indicated as ‘Net n’) are used to predict coefficients of the embedded wave equation. The number of subnetworks depends on the number of

coefficients predicted.
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measured signals using the ACT are normalized to have values from -1 to 1 where the amplitude of the signal, which represents a relative
displacement, is represented by the color scale.
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Figure 6. PINN prediction results: (a) relative displacement prediction for the glass sample, (b) absolute error between PINN results and
measurement data for the glass sample, (c) relative displacement prediction for the mortar sample, and (d) absolute error between PINN
results and measurement data for the mortar sample.
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Figures 6 (a) and (c) show displacement prediction results in
the time-space domain using the developed PINN for the
glass and mortar samples, respectively. The amplitude of the
time-space domain signal data are represented in terms of
normalized signal amplitude, while the amplitude of the
predicted displacement error for the glass and mortar
samples, shown in Figures 6 (b) and (d) respectively, are
represented by the absolute error of normalized signal
amplitude. The PINN provides overall displacement
prediction errors of 1.85 and 4.98 % for the glass and mortar
samples, respectively, as measured by the relative L2 norm.

The wave velocity prediction results over length for the glass
and mortar samples are shown in Figures 7 (a) and (b),
respectively. The green solid line represents the
experimentally obtained wave velocity profile calculated by
connecting multiple zero-crossing points of the wave fronts to
determine time of flight for specific, known measurement
positions over the length of the sample; we consider this to
be the true wave velocity profile although this is not fully
correct because of inherent measurement error and the
simplifying linear wave propagation approximation. The black
solid line connecting black and red points indicates wave
velocity prediction results from the PINN model. As
mentioned earlier, 20 % of data were retained as test data
(red points) and the remaining 80 % of the data (black points)
were used for training the PINN. Although no significant wave
velocity prediction error was observed at the red points for
both tests, improved prediction performance is expected if
more training points are used.

In the case of the glass sample, the wave velocity shows
variation along its length where the mean value for the “true”
wave velocity profile obtained from measurement data is
5163.3 m/s, while that from PINN is 5146.4 m/s, resulting in
an overall relative error of -0.33 % for the PINN model. For the
mortar sample, a notable change (reduction) in the wave
velocity is observed to start at around 180 mm from the first
measurement point in Figure 7 (b), which matches the
expected location of the boundary of the two component
sections (“strong” and “weak”) within the mortar sample.
Based on the measurement results, the mean value of the
experimentally obtained wave velocity in the strong section is
3967.1 m/s and that in the weak section is 3564.2 m/s, which
confirms expected behavior. The PINN prediction gives mean
values of 3925.1 m/s and 3421.0 m/s, respectively. This
results in relative PINN prediction velocity errors of -1 and -4
% for the strong and weak sections, respectively.

The developed PINN model well predicts wave velocity over
space based on the measured mechanical wave data. This
wave velocity information can be used to calculate variations
in Young’s modulus along the length of the bar knowing
Vio =+/E/p. Once the PINN model is trained, the wave
velocity, and thus E, can be predicted anywhere within the
range of the training data if density is known. Compared to
traditional nondestructive methods, such as ultrasonic pulse
velocity that requires point by point measurements to
characterize spatially varying material properties, PINN
provides inhomogeneous varying material properties
efficiently.
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Figure 7. Wave velocity from PINN prediction (black line and points)
and measurements (green line): (a) glass sample and (b) mortar
sample.

5 Summary, Conclusions, and Perspectives

In this paper the basic structure and function of artificial
neural networks (ANN) and physics-informed neural
networks (PINN) are introduced, and the potential for PINN to
contribute to material characterization tasks are considered.
We suggest that PINNs show potential for effective
application to a broad range of problems related to
construction materials issues, in particular flow in porous
media and characterization of inhomogeneous media. A
specific application of PINN analysis for mechanical wave
propagation in homogeneous and inhomogeneous media is
presented, where material wave velocity profile as a function
of space was predicted. We conclude that this particular
application of PINN is useful in that it can be used, using one
measurement set, to characterize inhomogeneous material
properties as a function of space, and thus may be useful to
evaluate material integrity variations knowing the connection
between wave velocity and material properties. Although
only a simple 1-D case was considered in this work, the
concept can be readily expanded to 2-D or 3-D cases, which
suggests that this approach can be applied to more realistic
structural elements, such as beams or plates, to characterize
in-place material properties. Furthermore, other meaningful
wave propagation characteristics, such as wave attenuation
coefficient or wave nonlinear parameters can be extracted
through appropriate modifications to the PINN structure.
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These additional characteristics could be used to characterize
sophisticated material properties or to diagnose early
damage.

It is clear that the development and deployment of PINN to
engineering and science problems is a rapidly emerging field,
and one that shows great potential. However, PINN is not a
universal tool and one can, and should, question whether
PINN can completely replace existing analytical, numerical, or
purely physics-based methods. PINNs exhibit many aspects
that need improvement, for example choice of
hyperparameters, spectral bias, balancing between loss
terms, computational cost, etc. At the same time it should be
noted that PINN is in its infancy; as future technological and
computing developments enable rapid collection of large
data sets, increase in computing power, and rapid growth and
acceptance of the ANN algorithm, we expect PINN will
emerge as a helpful and commonly applied tool to solve
difficult problems related to construction materials research.
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