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Abstract

The cement industry is a major contributor to the anthropogenic CO; emissions, with about 8% of all emissions coming from this sector. The global cement
and concrete association has set a goal to achieve net-zero CO; concrete by 2050, with 45% of the reduction coming from alternatives to Portland cement,
substitution, and carbon capture and utilization/storage (CCU/S) approaches. Magnesia-based cements offer a conceivable solution to this problem due
to their potential for low-to-negative CO, emissions (CCU/S) but also being alternatives to Portland cement. The sources of magnesia can come from
magnesium silicates or desalination brines which are carbon free for raw-material-related emissions (cf. carbonated rocks). This opens up possibilities for
low or even net-negative carbon emissions. However, research on magnesia-based cements is still in its early stages.

In this paper, we summarize the current understanding of different MgO-based cements and their chemistries: magnesia oxysulfate cement, magnesia
oxychloride cement, magnesia phosphate cement, magnesia carbonate cement, and magnesia silicate cement. We also discuss relevant research needed
for MgO-based cements and concretes including the issues relating to the low pH of these cements and suitability of steel reinforcement. Alternatives
reinforcements, suitable admixtures, and durability studies are the most needed for the further development of MgO-based concretes to achieve a radical
COz reduction in this industry. Additionally, techno-economic and life cycle assessments are also needed to assess the competition of raw materials and
the produced binder or concrete with other solutions. Overall, magnesia-based cements are a promising emerging technology that requires further
research and development to realize their potential in reducing CO; emissions in the construction industry.

Magnesia-based cements; MgO supply; Low pH cements; Low-to-negative CO, emissions; carbon capture and utilization/storage (CCU/S);
Magnesia oxysulfate cement; Magnesia oxychloride cement; Magnesia carbonate cement; Magnesia silicate cement
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magnesia can be sourced without raw-material-related CO,
emissions from magnesium silicates or desalination brines,
opening possibilities for net-negative carbon emissions.
However, the research on many magnesia-based cements is
still in its infancy. Nevertheless, magnesia-based solutions are
rapidly gaining interest and different approaches are being
scaled up globally.

1 Introduction

The cement industry is responsible for approximately 8% of
all anthropogenic CO, emissions, which consist mostly of
hard-to-cut emissions related to the chemistry of the
feedstocks. The Global Cement and Concrete Association
(GCCA) has set an ambitious target to reach net-zero CO,
concrete by the year 2050 [1], almost half of which (45%) is
covered by Portland cement alternatives, substitution and
carbon capture and utilization/storage (CCU/S) approaches.

The aim of this letter is to give a short introduction to
magnesia-based cements, their potential, challenges and a

general outlook for the field.
Despite no sustainable production exists yet, magnesia-based

cements have gained interest in concrete, but also in building 2
products, repair materials, waste encapsulation and waste
immobilisation applications due to their beneficial properties,
including low pH, high strength, good surface finish, and
potential for low-to-negative CO, emissions. Unlike CaO,

Supply chain of MgO

Currently MgO is commonly produced from the calcination of
magnesite, MgCOs, resulting in high amounts of CO,
emissions (1.5 kg CO, per kg MgO produced vs. 0.786 kg CO,
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per kg of CaO from CaCOs) [2]. Global production of MgO is
~ 14 M tons annually [3] which includes both caustic
calcined MgO and dead burned MgO. Dead burned MgO
makes up > 60% of MgO production, primarily for refractory
products, while caustic calcined MgO makes up the rest for
applications in agriculture and construction. This number is
obviously dwarfed by Portland cement (PC) production,
which is on the order of several billions of tons annually.
Therefore, paths to scale up sourcing and production in
economically and environmentally friendly ways will be
critical to make MgO-based cements a viable Portland
cement alternative. The use of alternative feedstocks for
MgO production is an active area of research as the current
feedstock (MgCOs) is not available in many parts of the
world, therefore making producers overly reliant on imports.

2.1 MgO from desalination brine / seawater

Dissolved Mg?* represents the fourth most abundant ion in
the world's oceans [4], with a typical Mg?* concentration of
52 mmol/L. In the wet process route, Mg hydroxide
(Mg(OH),) is precipitated from Mg-rich brine or seawater
and subsequently calcined to produce MgO. This is achieved
via alkaline precipitation, in which an alkali (e.g. lime, sodium
hydroxide) is added to elevate the pH to levels that cause
Mg?* to react with hydroxide ions (pH ~ 10.5) and form
Mg(OH), particles. There are also pre-treatment steps, e.g.
acidification, that are needed, depending on the source. At
the end of the this process, the Mg(OH), slurry is passed
through a filter, and the filter cake is calcined to produce
MgO. It should be noted that the calcination of Mg(OH),
does not directly emit any CO, and is 17% less energy
intensive than that of magnesite (excluding drying) [5, 6].

Currently the wet process route accounts for ~ 14 % of
global MgO production. One major drawback that has
limited widespread use is that compared to the current dry
process route (i.e. calcination of magnesite), the wet process
is highly energy intensive (17 vs 5.9 GJ per ton of MgO) [[7]
via [8]]. Only regions that have low magnesite reserves but
access to seawater/brine employ this process at meaningful
scales (e.g., > 60% of Mg compounds produced annually in
the U.S. are recovered from seawater/brine [9], while there
are ongoing initiatives in the Middle East and Singapore to
scale up MgO extraction from brines [10, 11]). Negative
impacts on the environment of reject brine from
desalination plants further motivate its conversion to
construction products [12]. Still, it is currently not
economically viable (nor appealing from a sustainability
standpoint) to produce a cement based on this technology.
However, with innovations in recovering minerals from
seawater/brine [13] and renewable energy, it is expected
that the wet process route will become increasingly more

viable for wider applications in construction. For instance,
seawater can be split into an alkaline and acidic stream via
electrodialysis (ED) (Figure 1a) [14, 15]. While the alkaline
stream drives Mg(OH), precipitation, hydrochloric acid is
also generated, which can be a high value co-product. If the
electricity used to power the ED process is generated via
renewable energy, it can be nearly carbon-free. One
drawback is that these membranes are vulnerable to scaling.
This requires pretreatment of the seawater, methods for
scaling reduction, or eliminating the membrane altogether,
e.g. membraneless electrolyzers (Figure 1b) [14, 16]. There
are reported studies that utilize different alkali sources to
drive  Mg(OH), precipitation [8], and assess the
characteristics and performance of seawater/brine derived
MgO-based cements [8, 17-19]. It was found that the alkali
source impacts the properties of the formed MgO. The MgO
derived via the wet process route (vs. dry) can exhibit higher
purity and reactivity, thereby improving carbonation
potential and resultant properties when used as cement
[18]. Although still limited, the results of these studies are
promising and motivate further investigation on MgO-
based cements derived from seawater/brine.

2.2 MgO from Mg-Silicates

Ultramafic magnesium silicate minerals such as olivine
((Mg,Fe);SiO4) could provide an almost endless supply of
MgO, with estimated available worldwide reserves of over
10 trillion tonnes [20]. These ultramafic minerals are widely
distributed across the world with major deposits in virtually
all industrialized countries, as shown in Figure 1b. The
potential use of olivine as a feedstock for cementitious
construction materials has received considerable attention
for many years, but primarily as a source for reactive silica to
be used as a partial replacement for conventional Portland
cement [21]. The recent interest in MgO recovery from
magnesium silicate (MOMS) [2] such as olivine has been
spurred by its potential use in carbon sequestration through
the relatively rapid reaction between Mg(OH), and CO, [22].
Many of the approaches being developed for carbon
capture could be applied for the production of MgO to be
used in magnesium cement systems.

There are essentially two major approaches to the recovery
of MgO from magnesium silicate minerals: 1) acid leaching
and, 2) alkaline dissolution [24]. There is a third method, in
which olivine will react directly with water through the
process of serpentinization [25], which results in the
formation of the mineral serpentine, Mg(OH),, Fe;O3 and
H.(g) but this process is relatively slow and not likely to be
suitable for commercial application at the moment.
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Figure 1. a) Currently known worldwide distribution of ultramafic rock (adapted from [23]); b) Process routes for Mg extraction from seawater
(adapted from [14]); c) Process (acid) route for Mg extraction from silicates (adapted from [23]).

In the acid leaching approach (e.g. as shown in Figure 1¢),
finely milled olivine is combined with a strong acid, though
weak acids can also be used, typically at temperatures less
than 90°C. The Mg?* in the olivine crystal structure is
replaced by the H*, resulting in the initial formation of
Si(OH)4 [26], as shown in Equation 1 for forsterite and
hydrochloric acid. If Fe>* is present in the olivine then an iron
salt will be formed in addition to the magnesium salt.

Mg,Si0, + 4HCL — 2MgCl, + Si(OH), (1)

There are two possible methods of production following
initial digestions and separation of the silica and iron:
pyrohydrolysis of the MgCl, solution [27], and use of
electrolysis to generate the hydroxyl ions necessary to
precipitate the Mg(OH), from the MgCl, solution [23]. The
first method of pyrohydrolysis produces MgO and HCI at
temperatures of approximately 600°C, but requires
evaporation of significant amounts of water from the
magnesium salt solution, which can be very energy
intensive. The second approach is conceptually similar to the
recovery of Mg(OH), from Mg-rich brines or seawater, as
noted in Section 2.2, but uses electrolysis to generate the
alkali component rather than using lime to precipitate the
Mg(OH),. The electrolysis process also regenerates the acid
which is used in the following digestions. Similar to the
Mg(OH), produced from the brine, the resulting Mg(OH)
can be calcined to produce MgO for use in cementitious
cement systems. The electrolysis process can be energy
intensive, consuming approximately 9 GJ of energy per
tonne of olivine processed, but depending on the energy
source, little or no CO; is emitted in the overall process.

Specific well-developed processes for Mg extraction from
magnesium silicates (especially from serpentinites) are so-
called AA-routes [28]. They rely on a mix of ammonium
sulfate and ammonium bisulfate to dissolve the mineral, and
can effectively utilize waste heat from industrial processes.
In addition, if coupled with CO, capturing from the flue gases
of a lime kiln using serpentinites or Mg-silicate mine tailings,
the process will generate MgCOs with only 0.9 GJ of
electricity and 2.6 GJ of heat needed per ton of CO; capture
[29].

In the alkaline dissolution method, ground olivine (forsterite)
is reacted with a strong base such as NaOH to form Mg(OH),
and silica, as shown in Equation 2a and 2b [24]. Although
the reactions are relatively slow at temperatures of
approximately 130°C, higher temperatures of 250°C provide
greater efficiencies [30].

Mg,Si0, + 2NaOH + H,0 — 2Mg(OH), + Na,Si0,
(2a)

Na,Si0, + 2HCl — 2NaCl+ H,0 + Si0, (2b)

As with the acid leaching electrolysis method, the recovered
Mg(OH), must be further calcined to produce MgO.
Mg(OH), could also potentially be used directly as a raw
material with reactive silicate or carbonate sources [31-34].

In summary, the use of magnesium silicate minerals offers a
potentially low carbon method to produce globally
significant quantities of MgO. It should be noted that in
addition to MgO, the mineral recovery process also
generates a highly reactive silica that can be used along with
the MgO to form an effective cement [35].
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One of the most significant issues with the utilization of
magnesium silicate minerals is the relatively high energy
demand for the various processes. However, compared to
the energy demand for alternative carbon capture and
storage approaches, the additional energy associated with
the processing of magnesium silicate minerals may not be
that different. Magnesium oxide produced from magnesium
silicates is currently not available in industrial quantities,
though there are several companies and organizations
working to commercialize this potentially low carbon
manufacturing method.

3  Recent improvements and research needs

Different chemistries of MgO-based cements including Mg-
oxysulfate, oxychloride, carbonate, phosphate, and silicate as
well as their admixtures are presented. Figure 2 highlights
how the different MgO-based cements group in terms of pH
in comparison to Portland cement and alkali activated
materials, another example of an alternative low-CO, binder.

MOoc/s PC-SCM
MP
AAM
mc
Ms PC
| | >
T I '
4 6 8 10 12 14
pH

(room temperature)

Figure 2. Approx. pH range for the stability of different MgO-based
cement systems. MOC/S = Mg-oxysulfate / Mg-oxychloride cements,
MC = Mg-carbonate cements, MP = Mg-phosphate cements, MS =
Magnesium silicate cements, PC-SCM = blended Portland cements,
AAM = Alkali activated materials, PC = Portland cement.

3.1 Mg-oxysulfate / Mg-oxychloride cements

Magnesium oxychloride (MOC) and oxysulfate (MOS)
cements — including those which have long been known as
“Sorel cements” - are receiving significant interest at present
as potentially low-carbon, high-performing cements in niche
applications [36, 37]. The chemistry and materials science of
these cements has been discussed in detail in recent reviews
[38, 39]. Ref. [38], in particular, focuses on the complexity of
the crystallographic phase formation and stability
relationships in these cements. Significant and ongoing
research efforts are dedicated to understanding and
characterizing the relationships between both stable and
metastable hydrous oxysalt phases [40-43]. Another key
research direction is in improving the water resistance of
various types of oxysalt-based cements through the use of
additives and modifiers [44]. Difficulties in achieving high
water resistance are generally related to the significant
aqueous solubility of the key binding phases (e.g. the so-called
5-1-8 and 3-1-8 phases in MOC cements, and the 3-1-8 and 5-
1-2 phases in MOS cements, where the values written as a-b-
¢ are the stoichiometric coefficients in the hydrate phase

formulae aMg(OH),-bMg(Cl,,504)-cH>0O) [43]. Modification of
MOS by addition of a blend of citric acid and boric acid has
recently shown the ability to stabilize some MOS phases for
better mechanical and durability performance [45], and
various waste-derived gypsums [46] and small biomolecules
[47, 48] have been used to improve the water resistance of
MOC in cementitious products.

Research on these materials has been particularly popular in
regions which have ample magnesium brine resources, for
example brine lakes or desalination by-products [49], as the
availability of the necessary large quantities of MgCl, and
MgO places limits on their larger-scale utilization elsewhere.
Nonetheless, the high final strength and high resistance to
chemical degradation in chloride-rich environments that can
be achieved using MOC cements have led to their application
in various roles including flooring [50] and wallboards [51], as
well as for ornamental purposes [38]. While these cements
are generally not compatible with conventional steel
reinforcement — particularly MOC due to high chloride
content —they are suitable for use with lightweight bio-based
fillers including waste wood [52], sawdust [53], or rice husks
[54], and also as concretes with conventional dense or
lightweight aggregates [55].

3.2 Mg-phosphate (MP) cements

Magnesium phosphate (MP) cements show fast setting and
high early strength and are thus used as rapid repair material,
refractories and for special applications such as e.g. waste
stabilization [56, 57]. MP cements are prepared using a
soluble acid phosphate (commonly NH;H,PO4 or KH,POy;
NaH,PO, is less common due to its lower solubility) and
harden in the presence of water through the reaction of
phosphate with magnesia (MgO) resulting in the formation of
struvite: NHsMgPO,4-6H,0, KMgPO,4-6H,0 or NaMgPO,4-6H,0
[58, 59]. Several other hydrates such as newberyite,
bobierrite or cattiite are formed as intermediate phases
during hydration. In commercial cement a surplus of MgO is
used (which reacts only partially) to allow the early formation
of stable 1:1 and 2:1 magnesium phosphates. The reaction
between MgO and phosphates occurs fast, setting is observed
within minutes, and different retarders such as borax, Al-salts
or intermixing with fly ash, wollastonite or silica fume are
used to slow down the reaction. Magnesium phosphates are
also of interest for magnesium silicate cements, where
phosphates are used in low dosages as dispersant [60—62].

3.3 Mg-carbonate (MC) cements

MC cements exhibit high potential as they can theoretically
reach carbon-negative status, if certain conditions are
provided. The hydration of MgO into Mg(OH), and its
carbonation under ambient conditions leads to the formation
of various metastable hydrated magnesium carbonate phases
(HMCs) with the general formula xMgCOs- yMg(OH),- zH,0
presenting cohesive properties. Alternatively, the formation
of stable anhydrous MgCQOs requires much higher pressures
and temperatures [5]. Cement based on the carbonation of
MOMS [2] showed a promising pathway to attain a very low-
CO; and potentially even CO,-negative concrete technology.
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A detailed list of the compounds in the MgO-CO,-H,0 system
is given in Table 1 where the phases are grouped according to
their similarities in the number of Mg?*, COs%*, OH" and H,0.
One of the main initiatives known in this area is Novacem’s
cement [63] involving a blend of MgO and HMCs. This
combination resulted in a hardened cement, which contained
brucite of low crystallinity after hydration [64, 65]. Another
route to utilize these carbonates involves the production of
plaster-like products [66, 67]. Glasser et al. [67] proposed two
approaches to utilize nesquehonite (MgCOs-3HO) to
produce plaster-like products: 1) thermal activation of the
nesquehonite, followed by the rehydration of the precursor;
or 2) direct curing of a slurry of nesquehonite at elevated
temperature. The former was shown to be a promising
pathway, where the product reached comparable
compressive strengths as those of gypsum plasters [66].

MC-based cements have certain limitations, which are of
interest to the research community. First, despite being the
most stable form of magnesium carbonate, the formation of
anhydrous MgCOs remains challenging due to 1) its high
energy barrier, 2) large hydration energy of H,O [5] and 3)
lattice constraints on the spatial configuration of COs groups
in magnesite crystals [68] (see also the current review [69]).
Second, since all HMCs are metastable in the MgO-CO,-H,0O
system [70], the stability and transformation of these phases
poses a risk to the long-term durability and consequently limit
the use of these cements. Third, the low reaction degree of
MgO due to the formation of passivation layers of Mg(OH)
and HMCs present an inefficient use of this cement from the
CCS point-of-view. Finally, the need for ex-situ carbonation
for rapid strength development can necessitate the need for
specialized curing environments to enable the use of these
cements in pre-cast applications.

In line with these limitations, recent improvements have
shown some promising progress to overcome the above-

Table 1. Compounds in the MgO-CO»-H20 system.

mentioned bottlenecks and deliver better performance and
efficacy in producing these cements. Blends of MgO and
HMCs are being further investigated with the goal of
developing ready-mix concrete mixes involving MCs as the
main cement [64]. The reaction kinetics and degree of
reaction of MgO and associated formation of HMCs have
been enhanced via the inclusion of organic additives [71], MC
seeds [72] and bacteria [73]. Additionally, the structure
brucite formed in such carbonated materials contain water
and carbonates [74, 75]. These improvements have enabled
a more effective use of MCs and carbon in both ready-mix and
pre-cast elements. In addition to the research initiatives on
the enhancement of the properties of these cements, plaster-
like materials and blended formulations involving the use of
reactive MCs are also being developed. However, more
efforts are still needed to 1) better understand the phase
composition of MgO-HMCs blends, 2) lower the amount of
unreacted MgO and/or Mg(OH), under carbon curing, and 3)
obtain data for long-term durability and performance of these
cements.

3.4 Magnesium silicate (MS) cements

MS cements harden due to the formation of magnesium
silicate hydrate (M-S-H) phases from the hydration of reactive
sources of magnesia and silicate [38, 76]. MS cement
produced by calcination and pulverization of magnesium
silicate rocks and lime were patented at the end of the 19*"
century [77]. Further U.S. patents indicated that magnesia
chloride cements were improved by the addition of silicates
[78, 79]. In general, poorly crystalline M-S-H forms from the
reaction between silicate and magnesia, Mg(OH),, MgSO4 or
MgCl;, in a basic environment [76, 80].

Chemical formula

Name

MgO
Mg(OH)2
Group | MgCOs
MgCOs-H,0
MgCOs-2H,0
MgCOs-3H,0
MgCO0s-5H,0
MgCO0s-6H,0
Group Il Mg>(CO3)(OH).-0.5H2.0
Mg>(CO;z)(0OH)2-3H.0
Group Il Mgs(CO3)a(OH)2
Mgs(CO3)s(OH)2-4H,0
Mgs(CO3)a(OH)2:5-8H.0
Mgs(CO3)a(OH)2+5-6H.0
Mgs(COs)a7(OH)o.3-12H,0
Group IV Mg7(CO3)s(OH)a-24H,0

magnesium oxide / periclase
brucite

magnesite
monohydromagnesite
barringtonite

nesquehonite

lansfordite
hexahydromagnesite
pokrovskite

artinite

magnesium carbonate hydroxide
hydromagnesite

dypingite

giorgiosite
protohydromagnesite

shelkovite
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x Ca(OH), + y Mg** + SiOy (qm) + zH,0 - My, —S —H, + x Ca** (3a)
5Mg,Si0, + 2S5i0, + (7 + 2)H,0 — 3MgsSi,05(0H)s + Mg(OH), + SiO, + zH,0 » M—S—H,  (3b)

M-S-H formation is also observed in geological
environment in the presence of high pH values (>9) in the
contact zone between Portland cement and Mg-containing
solution [81]: M-S-H has been observed in cements in
contact with river [82], clayey [83] or saline waters [84, 85]
(Equation 3a) also forming during the serpentinization of
olivine [86, 87] (Equation 3b).

In the last decades, MS cements gained interest in the
context of nuclear waste management due to the lower pH
of the matrices compared to hydrated Portland cements
[88]. Additionally, MS cements show beneficial properties
for radionuclide retention [89, 90] as well as for the
immobilization of metallic wastes [31, 91]. Therefore, several
recent studies have focused on the understanding of the
structure and the stability of M-S-H phases [88, 92]. M-S-H
phases are nano-crystallite hydrated phyllosilicates with
relatively short coherence length, small particle size and thus
large surface area > 200 m?/g [92-96]. The alkalis and
calcium can be sorbed in the interlayer or at the surface [97,
98]. Interestingly, once formed, M-S-H is stable over a large
range of pH (7.5 to 12.5) [97, 99].

The formation of M-S-H is rather slow in the pure MgO-
silicate water — mostly in laboratory experiments — due to a
kinetic hindrance of brucite dissolution [100]. The presence
of hexametaphosphate or carbonates can accelerate the
reaction due to the formation of aqueous Mg complexes,
leading to the destabilization of brucite [101-104]. The use
of hexametaphosphate also strongly improves the
workability, which leads to a lower water demand and thus
lower porosity [101], such that M-S-H cements mixed with
hexametaphosphate show 28-day compressive strength
comparable to that of PC [101, 105]. More generally, the
compressive strengths of MS cements depend strongly on
the water content and thus, the porosity of the matrix [106].
However, we have a limited understanding of the properties
of M-S-H itself or the microstructure of such cements. The
physical properties of such cements or concretes from
setting/hardening to drying or durability studies are not
reported in literature.

To produce MS cements, both sources of MgO and SiO; are
needed. If MgO is recovered from magnesium silicate rock
as forsterite or serpentine [23, 28], the silica from the Mg-
silicate separation could be used. However, this side product
contains some iron, calcium, aluminum and alkalis
depending on the separation process. Reactive clays
produced by thermal or mechanical activation of globally
available clay minerals could act as silicate sources as well.
Such activated clays will contain large amounts of
aluminates, but also iron compounds, alkalis and traces of
calcium. The incorporation of aluminate in the main layer of
M-S-H has been observed in M-S-H synthesized in the

laboratory [107-109]. The presence of aluminates from
reactive clays can lead to the formation of additional Mg-Al
layered double hydroxide (Mg-Al LDH) together with M-(A-)S-
H [110, 111]. The formation of Mg-Al LDH lowers the porosity
and improves the mechanical properties [112-115].
Potentially Fe?*/Fe® could also contribute to LDH formation
[116] or be incorporated in M-S-H or Mg-Al LDH [117],
although this has not yet been reported for M-S-H based
cements.

3.5 Admixtures

Much less work on admixtures that could be used in MgO-
based cements compared to PC systems has been reported.
Mainly, three issues have been tackled so far: (i) reduction of
the generally high water demand by the use of dispersing
agents, (ii) adjustment of setting time with accelerators or
retarders, and (iii) increase of the hydration degree of MgO
with an emphasis on the enhancement of CO,-sequestration
due to enforced carbonation.

The high water demand of MgO-based cements needs to be
reduced in order to provide sufficient mechanical properties.
Dead-burnt MgO has been used as model material to study
the adsorption of organic polyelectrolytes such as the
polymers used in superplasticizers for PC-based concrete, as
its surface chemistry and adsorption properties are
comparable to those of PC[118, 119]. Thus, dispersing agents
that work in PC-based cements, i.e. superplasticizers based on
polycarboxylate-ether or naphthalene sulfonate, seem to
work with MgO-based cements as well. However generally
quite high dosages are needed for these cements e.g., MOC
cement [120], MOS cement [121], MgO-based suspensions
and paste [122-124], and MC cement [65]. Despite the high
dosages, the retarding effect seems to be less than in the case
of PC-based systems, and the addition of a retarder may still
be necessary i.e. in case of MC cement (MgO-HMC blends)
[65]. However, the types of superplasticizers developed for PC
might not be perfect for MgO-based cements. This refers
especially to MS cements, as silica fume shows incompatibility
issues with certain superplasticizers [125]. Phosphate-based
dispersants such as sodium hexametaphosphate (NaHMP)
have been studied especially for magnesium silicate cements
[101, 102, 126-129]. Besides significantly improving
workability, they increase pH, thus increasing SiO, solubility.
This alone would be problematic since the solubility of Mg is
poor at high pH, however HMP suppresses brucite
precipitation, therefore improving Mg solubility and
increasing pH simultaneously [126]. Other additives such as
Ca0 [130], sodium metasilicate [131], alkali carbonates [18,
132, 133] and NaCl [133] have also been used to enhance
early and late age hydration kinetics. Furthermore, boric and
citric acid are used to improve the mechanical properties of
MOC [45] and polymer latexes to improve water resistance of
MOC [134].
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So-called "hydration agents" are used to enhance the reaction
degree of MgO in carbonation-hardening construction
products, thus facilitating the sequestration of CO,. Such
additions comprise of NaHCOs, NaCl, MgCl,, HCl, as well as
sources of organic ligands such as magnesium acetate [65,
132, 133, 135, 136]. The pH range of MgO-based cements
currently makes them only suitable for unreinforced
concretes, therefore eliminating concerns of Cl on steel rebar
corrosion. These organic ligands proved to be very efficient in
increasing the reaction degree of MgO, the amount of Mg
ions in the liquid phase, the amount of sequestered CO, and
the mechanical properties. Furthermore, the hydrate
assemblage of the carbonated paste is altered, stabilizing a
giorgiosite-like phase in favour of dypingite [136]. Nucleation
seeding by the addition of HMCs is a further option to
enhance reaction and carbonation kinetics in such systems
[72, 137].

4  Potential of thermodynamic models to predict
the composition of MgO-based cements

Over the last decades, thermodynamic modelling has been
established as an efficient tool to predict the kind and amount
of hydrates forming in hydrated PC, blended cements,
calcium sulfoaluminate, calcium aluminate, alkali activated
and magnesium phosphate cements [138, 139]. In hydrated
Portland cements, blended and alkali activated cements the
prediction of the "fate" of magnesium is hampered by
incomplete and contradictory data for hydrotalcite-like
phases (Mg-Al layered double hydroxide, Mg-Al LDH) [138,
140], which are the expected Mg-containing phases in such
systems. Mg-Al LDH are difficult to observe by XRD due to
their low crystallinities and their varying composition. Thus in
the recent years, several groups experimentally investigated
the solubility of Mg-Al LDH with varying compositions [141,
142], which led to additional, partially contradictory solubility
data, while data for Fe-containing LDH are still largely missing.

For M-S-H, the nano-crystalline solid solution characteristic
for hydrated magnesium silicate cement with a variable
composition (Mg/Si ratios between 0.8 to 1.5 and H,O/Si
from 1.5 to 5), data related to solubility, heat capacity and
entropy data have been determined in the last years [100,
143, 144]. The derived solubility data indicate that the poorly
crystalline M-S-H is slightly more soluble than crystalline
magnesium phyllosilicates such as talc or antigorite.
Preliminary thermodynamic models to describe the uptake of
aluminum in the main layers and of calcium or alkalis as
exchangeable cations have been published [97, 98, 109],
although formulation of a thermodynamic solid solution
model taking into account the structural knowledge is still
missing. Thermodynamic models for the uptake of other
cations or anions are not available due to a lack of systematic
experimental data. Finally, also data for MgO-based zeolites,
which could form in the presence of aluminum, are not
available.

For HMCs, well-determined thermodynamic data are
available for nesquehonite, hydromagnesite and dypingite
[145, 146], while data for artinite, monohydromagnesite,
barringtonite, lansfordite and hexahydromagnesite are

estimated [147] or indirectly calculated from calorimetric
measurements [148]. Additionally, the stability of these
carbonates is strongly influenced by temperature.
Thermodynamic data are not known for the unknown poorly
crystalline phase reported by Refs. [64, 65], or for phases such
as  pokrovskite, giorgiosite, hydrated  dypingite,
protohydromagnesite or shelkovite. As many different types
of magnesium carbonate hydrates can potentially precipitate
near ambient temperatures (Figure 3) depending on CO,
pressure, pH values, relative humidity, time and temperature
and as the conversion observed in such HMCs is slow,
thermodynamic modeling is needed to gain a deeper
understanding of the full system. At present, however, many
missing or estimated data for HMCs and poor knowledge of
the factors determining their precipitation kinetics, prevent
reliable thermodynamic predictions for MC cements, as
discussed in Refs. [65, 104].
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Figure 3. Free energies relative to MgO in kJ/mol as a function of
temperature at pCO, =0.4 mbar and saturated vapour pressure for
different HMC. A: artinite, D: dypingite. H: hydromagnesite, L:
lansfordite, M: magnesite, N: nesquehonite. Calculated based on the
thermodynamic data compiled in [104].

For MOC, MOS and MP cements, carefully derived
thermodynamic datasets are available [149-154]. The main
hydrate phases in MP cements, K-, Na- or NHs-struvite, are
relatively stable at above neutral pH values and ambient
temperature, but are converted to phases with less water at
slightly increased temperatures. At neutral pH different
orthophosphates such as cattiite and bobierrite are stabilized
and newberyite at pH 6 and below [150]. The phases formed
in MOC and MOS systems, such as:

Mgz(OH)3C|4H20,

Mgg(OH)5C|4H20,

3Mg(OH),.MgS0,-8H,0,

5Mg(OH),-MgS0,4-2H,0, or,

Mg(OH),-MgS04-5H,0,
however, are highly soluble, i.e. in equilibrium with
magnesium, chloride and/or sulfate concentration in the
range of several mol/L, such that specialized ion activity
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corrections for highly saline solutions such as the specific ion
interaction theory (SIT) or the Pitzer equation should be used
together with the respective set of ion interaction parameters
[155, 156].

Missing thermodynamic and structural data, in particular for
hydrated magnesium carbonates but also for magnesium
based zeolitic precursors, or only partially established
thermodynamic data (LDH, uptake of ions in M-S-H, ...) limit
the potential of thermodynamic modelling to predict the
hydrate composition of magnesium-based cements. There is
an urgent need to determine experimentally the missing
thermodynamic data for a range of solids as well as of
potential agueous complexes. In addition, the different ion
activity models used in high (SIT, Pitzer [155, 156]) and low
(often extended Debye Hiickel [138]) ionic strength systems
need to be merged in a single ion activity model, a challenging
task due to the lack of Pitzer parameters describing specific
ion interactions of Al-Mg, Mg-Si and Al-K, and the limitations
of the extended Debye Hiickel [138] to ionic strength of < 1
M.

5 Atomistic modeling of MgO-based cements

Atomistic modeling of cement-related systems has gained
considerable interest in the last decade, yet MgO-based
cements have not been between the most active areas of
research, and few studies can be found in this context [157,
158]. Nevertheless, there are some aspects of MgO-based
cements that might help in a fastimplementation of atomistic
modeling. First, both reactive and binding phases are
predominantly crystalline, in contrast to the C-S-H gel in PC
[159], which reduces the uncertainties about atomic models
and simplifies the simulations. Second, the geochemistry
community has worked intensively on the simulations of
MgO-based minerals for the last 20 years. Their main interest
has been the weathering and carbonation of Mg-silicates
[160, 161] and the formation of Mg-carbonates, usually in
comparison/combination with their Ca counterpart [147, 162,
163]. Thus, the physicochemical processes of interest are
virtually the same in geochemistry and cement chemistry
(dissolution, complexation, nucleation and growth, etc) and
there is a well-established literature background on which to
stand. Finally, and linked to the previous, computational tools,
and particularly force fields for molecular dynamics
simulations, have been already developed. The most
common force fields used in cement research have their
counterpart for MgO-based systems: core-shell potentials
[164], ClayFF [165] and recently ReaxFF [166, 167]. These
potentials should be tested carefully before extensive use,
and reparameterization for specific problems might be
necessary in some cases. Overall, there is a good pool of
computational methods and literature knowledge that will
serve as a starting point for future research in the field.

Regarding the potential use of atomistic simulations, we must
take into account that the time and size limitations, hundreds
of ns and tens of nm, makes it impossible to study directly
macroscopic processes. To uncover their full potential the
simulations should be carefully designed to target aspects
complementary to the experiments. For instance, atomistic

simulations could be used to provide thermodynamic data of
MgO-phases to complete or refine thermodynamic databases
[168]. Another potential field is the speciation and
complexation of Mg ions in solution [169], which is critical in
dissolution and nucleation, and for the design of admixtures.
It is interesting to notice that, despite the structural and
chemical similarity between certain CaO- and MgO-based
phases (brucite/portlandite, sanderite/gypsum,
magnesite/calcite, fosterite/y-dicalcium silicate), Ca and Mg
solubility and kinetics are considerably different. The variation
can be attributed to the stronger Mg-O bonding, which
translates into less reactive solids [170] and stronger Mg-
water solvation shells [171]. Atomistic simulation could help
in understanding reaction mechanisms, quantification of
activation energy barriers, and guide the design of solubility
agents and admixtures, always in combination with
experimental work.

6  Opportunities and limitations for the different
cements

In regions, where sustainable MgO derived from Mg-silicate
rocks and/or Mg-rich brines will be plentiful, there will be
some interest in the development and use of MgO-based
cements for general usage in non-reinforced concretes, other
non-structural applications or natural fiber reinforced
composites. However, if a significant impact in terms of CO»-
savings is targeted, the use of MgO-based cements in
structural applications is mandatory. This means solutions for
improving the suitability of steel rebar or alternative
reinforcement in MgO-based concretes should be actively
sought. In this section, we discuss the opportunities and
current bottlenecks for MgO-based cements.

6.1 MOC/MOS cements

The MOC/MOS are already commercialized and are the most
advanced systems compared to the MC and MS cements.
Their attractive surface finish and high strength (leading to
high abrasion resistance) bring some interest in their use for
industrial flooring. The high bound water content of several
of the important MOC and MOS hydrates, and the low
thermal conductivity that can be achieved (particularly with
the use of lightweight and/or bio-based aggregates), lead to
interest in the use of these materials in fireproofing
applications and internal wallboards. However, broader
usage will probably always remain to some degree restricted
by the combination of geographic constraints on the raw
materials supply, and the difficulty associated with achieving
a stable hydrate phase assemblage that is resistant to
environmental moisture. Magnesium oxysalt phase diagrams
are rich in phases that are stable and/or metastable under
different concentration/humidity/temperature conditions,
meaning that the properties of the resulting cements tend
also to be rather sensitive to formulation and application
conditions.

6.2 MP cements

MP cements possess the highest mechanical performance of
the so-far known MgO-based cements, and is currently in use
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in niche applications, such as industrial flooring or rapid
repairs. Nevertheless, phosphorus is a critical fertilizer that
cannot be recycled with the known technologies, and its
resources are dwindling. Phosphate rock is a non-
substitutable, non-renewable natural resource, which is
essential for global food security. Affordable access to
phosphorus is imperative to ensure global food provision and
insufficient phosphorus fertilizer use in many parts of Africa
will likely lead to crop yield reductions of nearly 30% by 2050
[172, 173]. There are no sustainable feedstocks for MP
cements, that would not impinge on global food production
such that MP cements should not be used as a mass product
in construction industry. However, phosphates — although in
low quantities - are also present in dispersants such as sodium
hexametaphosphate (NaHMP), which are particularly
effective for magnesium silicate cements and its use as a
minor additive contributes significantly to lowering the water
demand. Focused research is needed to assess the
environmental footprint of phosphate as minor additive in
other MgO-based cements.

6.3 MC cements

MC cement has the potential to be a carbon-negative cement
as they can uptake CO,. With the current advances in MgO
extraction (i.e., from Mg-silicates or the Mg-rich brines), the
cost and energy required to produce MgO can be brought
down to the level that carbon capture and utilization can
create revenue and profits. Additionally, if magnesium
carbonates can form in its most durable form (anhydrous
magnesium carbonate or possibly also hydromagnesite,
which occurs in natural deposits), the final product can store
carbon for millennia and can be used as fillers such as
aggregates in construction. A promising first application of
this cement is to produce non-load-bearing structures such as
bricks, or plasterboard products, which have less strict
requirement for service-life performance. Furthermore, if
MCs can be produced in reactive forms, this opens up
opportunities for their use as supplementary cementitious
materials (SCMs) in cement blends or for improving the
performance of MgO-based cement.

The current limitations of MC cement are as follows: 1)
Variability/availability of raw materials in different parts of
the world 2) lack of long-term data for durability
performance, 3) in-depth understanding of the phase
transformation among different HMCs and the ability to
model this phenomenon (e.g.,, via thermodynamic
modelling), and 4) the lack of holistic assessment for techno-
economic viability of mass producing this cement.

6.4 MS cements

If reactive silicate/aluminate are by-products of sustainably-
sourced MgO, MS cements could become attractive.
Compared to MC cements, they can generate higher
compressive strengths without relying on carbonation [76].
The combination of the MC and MS chemistries seems
promising to obtain a cement with both relatively low carbon
footprint and optimized performance. However, the stability
of M-S-H versus the stability of HMCs is not yet understood.

MS cements could also be used as cements for building
materials containing natural fibers or bio-aggregates [174,
175] as they present lower pH values and seem to be more
compatible with such organic-based aggregates than PC
systems [175-177]. Finally, the M-S-H phases are very stable
[178] and present a strong potential as durable cements for
low-CO, construction.

Excluding the availability of the raw materials, the main
limitations are related to 1) the implementation, i.e. the fresh
properties and early mechanical properties linked to the slow
reaction rate, 2) the lack of fundamental understanding of the
effect of the elements such as aluminum, iron, calcium on
fresh and mechanical properties; and 3) the lack of long-term
data on durability.

7 Conclusions

Magnesia-based cements come in multiple flavors, with each
one possessing attractive features for different applications.
Their current use remains limited by geographic constraints
on the MgO supply and available MgO extraction
technologies. Considering the various applications and high
competition for these raw materials with other markets (i.e.,
magnesium is considered as a critical raw material by the
European Union [179]), establishing a sustainable long-term
supply for MgO or its derivatives with cementitious properties
are essential.

Research is actively ongoing in multiple fronts, especially
driven by the need for large scale carbon capture and
utilization/storage applications, as well as the need for low-
CO, cements and SCMs. Current limitations that should be
addressed by research include the lack of thermodynamic
data for many of the phases of interest, as well as the lack of
long-term studies on durability and microstructural changes.
Furthermore, admixtures tailored for magnesia-based
systems have not been investigated, which could play a
critical role in facilitating the use of MgO cements in large
scale applications. While non-structural applications are
initially attempted, the use of these binders in structural
concrete is needed to make a significant impact in the
reduction of CO, emissions. To enable their use in structural
applications, the compatibility of these binders with
traditional as well as other types of reinforcement needs to
be investigated. Due to the low pH of MgO-based concretes,
mild steel reinforcement might not be suitable without
adjustments to the mix design and/or curing conditions.
Furthermore, techno-economical assessments, as well as life
cycle assessments are still largely missing or are implicit,
which is natural given the low technology readiness level (TRL
<5) for the different applications.

To conclude, magnesia-based cements are emerging
technologies and an active area of research with increasing
number of parties that are interested in these products. A
new RILEM Technical Committee (MBC: Magnesia-based
binders in concrete) [180] has recently been established on
the topic, with the aim of improving understanding and
coordination in the nascent field as well as to formulate a
research roadmap to initiate the applications of MgO-based
binders in the construction industry.
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