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Abstract 
In November 2023 this journal published “Thermal conductivity of porous building materials: An exploration of new challenges in fractal modelling 
solutions”. That paper gauges four fractal building materials’ thermal conductivity models, concluding that fractal-geometry-based approaches appear “a 
promising method” as they “demonstrate high reliability in reproducing experimental data”. This discussion of the paper aims to shine a different light on 
the potential of fractal thermal conductivity models. It shows that good agreement with experimental data usually originates from calibration of various 
“physical” factors comprised in these models, with the fitted numbers commonly deviating from physical reality. Moreover, exemplary instances reveal 
that good agreement with experimental data is obtained despite misinterpretation of measured outcomes or critical defects in model development, or, 
exceptionally, due to fabrication of validation information. This discussion does hence not share the paper’s positive opinion on the prospects of fractal-
geometry-based thermal conductivity models, and advises caution instead. 
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 Introduction 

In November 2023 this journal published the paper “Thermal 
conductivity of porous building materials: An exploration of 
new challenges in fractal modelling solutions” [1]. That paper 
assesses four fractal models for the thermal conductivity of 
dry and moist porous materials, and concludes that fractal-
geometry-based approaches seem “to be a promising 
method” as they “demonstrate high reliability in reproducing 
experimental data under various conditions”. The paper 
ultimately asserts that “the future prospects for the use of 
fractal geometry for the formalisation of predictive models of 
thermal conductivity in porous materials are definitely 
promising and require further research and development to 
overcome current challenges”. 
This discussion aims to shine a different light on the potential 
of fractal models for thermal conductivity of porous materials. 
It is shown below that the good agreement with experimental 
data often stems from calibration of the various “physical 
factors” that are typically comprised in these models, with the 
ensuingly fitted values commonly deviating (highly) from 
actual physical reality. These factors, being allocated but not 
employed as physical features, thus reduce to plain fitting 
factors without physical meaning, which in turn degrades the 
models from predictive to heuristic. In addition, exemplary 

instances expose that good agreement with experimental 
data is achieved despite misinterpretation of measured 
outcomes, despite critical defects in model development, or, 
albeit exceptionally, due to fabrication of validation 
information. This discussion does hence not share [1]’s 
positive opinions on the prospects of fractal-geometry-based 
thermal conductivity models, and advises caution instead. 
In what follows, an opening discussion introductorily 
establishes some crucial concepts. Subsequently, the four 
models tackled in [1] are critically assessed first. These 
findings are then complemented by assessments of a few 
other fractal porous media thermal conductivity models. In a 
closing discussion, a similar verdict is established on another 
popular application of fractal models, particularly fractal 
bundle-of-tube models for capillary absorption in porous 
materials. 

 Opening discussion 

 Porous materials’ fractural nature 

The four fractal thermal conductivity models discussed in [1], 
in line with many other fractal models in literature, all 
conjecture that porous media are intrinsically statistically self-
similar [2], and that they hence can unreservedly be 
represented by fractal models. The seminal article on this 
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front though formulates particular conditions to be met in 
order for porous materials to have fractal nature [2]. The 
statistical self-similarity requires that the particle/pore size 
distribution follows the fractal power law over a sufficiently 
large range of magnitudes: 

N(𝐿 ≥ 𝜆) = (λ!"# λ⁄ )$! 																								
with	λ!%& 	≤ L ≤ λ!"#			and			 λ!%& λ!"# ≪ 1⁄ 	 

(1) 

with N [-] number of particles/pore with diameter L [m] larger 
than cut-off diameter λ [m], λmin, λmax [m] minimum and 
maximum diameter respectively, and Df [-] fractal dimension. 
Particularly, the fractal power law imposes that the 
particle/pore counts increase exponentially with decreasing 
particle/pore sizes. It can be shown that this ensuingly forces 
the incremental particle/pore volumes to shrink 
exponentially with decreasing particle/pore sizes. For the 
“sufficiently large range of magnitudes”, it is typically required 
that the ratio of minimum and maximum particle/pore size 
stays below 0.01. In the literature, the fact that this final 
condition is usually satisfied for natural porous media is often 
invoked to presume all porous media having fractal nature. 
However, that latter condition does not inherently guarantee 
that the porous media’s particle/pore counts/volumes follow 
the fractal power law by itself. And moreover, for artificial 
porous media, like sphere packs or particle beds, even that 
sufficiently small ratio of minimum and maximum 
particle/pore size often is neither complied with. 
For these statistically self-similar porous media, there exists a 
widely accepted relation between porosity, fractal dimension 
and ratio of minimum and maximum particle/pore size [2]: 

D' = D( − ln(φ) ln(λ!%&/λ!"#)⁄ 	 (2) 
with DE [-] Euclidian dimension, and 𝜑 [-] porosity. While this 
relation has originally been derived for Sierpinski carpets 
exclusively [2], it is presently generally accepted and 
employed for porous media in the fractal model literature. 

 Thermal conductivity analogon 

An analytical model for the effective thermal conductivity of 
composite materials, explicitly considering the materials’ 
particle size distribution, is brought forward in [3]. In the 
model, the particle size distribution is approximated with a 
Weibull distribution, with shape factor s [-] and scale factor λ 
[-]. The model is founded on Maxwell’s equation, but applies 
an equivalent porosity instead of the actual porosity, to 
account for that impact of the pore size distribution: 

𝑘) =
𝑘* =𝑘+ + 2 · 𝑘* + 2 · 𝜑) · A𝑘+ − 𝑘*BC

=𝑘+ + 2 · 𝑘* − 𝜑) · A𝑘+ − 𝑘*BC
 

(3) 

with ke, kf, ks [W/mK] the composite’s effective conductivity, 
the fluid conductivity, the solid conductivity, and 𝜑)  the 
equivalent porosity [-], attained by inflating the actual 
porosity 𝜑 [-] with χ [-]: 

𝜑) = 𝜑 · 𝜒 = 𝜑 · 𝛤,(1 + 3 𝑠⁄ ) 𝛤-(1 + 2 𝑠⁄ )⁄ 	
with	𝜆 = 1 𝛤(1 + 1 𝑠⁄ )⁄  

(4) 

with Γ [-] the gamma function. The physical parameter s hence 
fully governs the original particle size distribution and the 
resulting equivalent porosity. Equation (3) is now applied to 
measured results from [4], particularly the first four data sets 
from its Table 1. These data have also been used in [5], which 
is one of the models discussed in [1], and are hence relevant 
for this discussion. This yields the results in Table 1, wherein 
calculated and measured values match perfectly. One could 
consider this a successful validation of the model, given the 
perfect fit between measured and modelled results, obtained 
by accounting for the physical influence of the particle size 
distribution. The Weibull parameters listed above all translate 
to distributions with a wide spread of particle size diameters 
around the average, with relative standard deviations 
amounting from 30 % up to 45 % of the average. 
This success is annulled however by the fact that the particle 
sizes of [4]’s configurations do not follow such wide Weibull 
distribution. Instead they are constant, see the unique 
particle sizes in Table 1. This infers that the “physical factor” s 
is improperly employed to match measured and modelled 
results. And this implies that s is theoretically defined as 
physical factor, but is practically applied as a plain fitting 
factor without physical meaning. And this indicates that s 
implicitly compensates for another physical impact which is 
not explicitly considered in Equation (3). 
This in turn degrades the model from predictive to heuristic, 
as it becomes infeasible to predict the s value for other 
configurations based on physics. Instead, these other 
configurations are to be measured, to again fit Equation (3) 
via s. This is already exemplified with the different values of s 
necessary for configurations 2 and 4, wherein only the liquid 
differs, as the solid fraction is composed of the same particles 
and has (nearly) the same porosity. These two configurations 
make clear that there is a physical influence of the liquid – e.g. 
on the local resistance at particle contacts –, which is not 
comprised in Equation (3), and which it instead incorrectly 
conceals via a different particle size distribution parameter s. 

 

 
Table 1. Results from fitting [3]’s calculated values to [4]’s measured values. 

# 𝒇𝒍𝒖𝒊𝒅 𝒔𝒐𝒍𝒊𝒅 𝝋 𝒅∗ 𝒌𝒇 𝒌𝒔 	𝒌𝒆,𝒎𝒆𝒂
∗ 𝒔 𝝀 𝝌 𝝋𝒆 𝒌𝒆,𝒎𝒐𝒅

∗ 
1 water glass 0.396 0.003 0.62 1.1 0.84 3.40 1.11 1.29 0.510 0.84 
2 water glass 0.425 0.025 0.62 1.1 0.84 3.90 1.10 1.22 0.520 0.84 
3 glycol glass 0.349 0.006 0.26 1.1 0.56 2.42 1.13 1.53 0.535 0.56 
4 glycol glass 0.427 0.025 0.26 1.1 0.60 2.95 1.12 1.37 0.585 0.60 

 *: d [m] particle size, ke,mea, ke,mod [W/mK] measured and modelled effective thermal conductivity 
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 Fractal thermal conductivity models 

 Ma et al., 2003 

“A self‐similarity model for effective thermal conductivity of 
porous media’’ [5] develops and evaluates a fractal thermal 
conductivity model for two-phase porous media, see [5] and 
[1]’s Section 5.1 for further details. [5]’s comparison to 
experimental data is two-fold, see [5]’s Figures 6 and 7, the 
latter of which is repeated in [1]’s Figure 6b, which is hence 
targeted in this assessment. For that comparison, [5] adopts 
5 data points from [4]’s Table 1 and 10 data points from [6]’s 
Table 3, and compares these to model predictions at porosity 
44 %. 
It should initially be noted that [4,6]’s measured porosities 
range from 34.9 % to 42.7 % [4] and from 39 % to 41 % [6], 
rendering [5]’s choice for 44 % odd. It should however also be 
noted that [6]’s Table 3 does not gather measured findings, 
but instead presents model calculations based on [6]’s own 
thermal conductivity model, being calculated at 44 % 
porosity. Instead, [6]’s actual measurements are reported in 
[6]’s Table 2 and Figure 4, and the latter exposes deviations 
between measured and calculated data. This already 
jeopardises, albeit slightly, the good agreement between 
calculated and “measured” data in [5].  
Additionally though, and already more critical, [5] clearly 
asserts that certain factors in its model have been calibrated 
for optimal fit with the measured results, stating that “Ant/A = 
0.55 and t+ = 0.001 are chosen as they are the best fit for the 
experimental data”. At no point does [5] provide evidence 
that these values are in sync with the actual physical features 
of the porous media involved, and these factors are hence to 
be considered as plain fitting factors, without a concrete 
physical meaning, see also Section 2.2. 
Most crucially however, [5] strongly defends the use of “1.89” 
as fractal dimension for the porous materials involved, 
equalling the fractal dimension of the Sierpinski carpet [2], on 
which [5]’s model is based. Equation 2 ( with DE 2 and 𝜑 0.44) 
then results in 0.0006 as the ratio between the smallest and 
largest particles/pores, suggesting that the largest 
particle/pore is over 1700 times larger than its smallest 
counterpart. Such size ratio is however impossible for the 
glass, acrylic and metal spheres used as particles in [4,6] as 
they are all characterised with a unique diameter [4,6]. Such 
size ratio is equally impossible for the pores in between these 
spheres as [7, among others] establishes that the largest 
pores in sphere packs commonly are not more than 4 times 
larger than the smallest pores. The fractal dimension is 
therefore likewise to be considered as a plain fitting factor, 
without a concrete physical meaning, see also Section 2.2.  
On this matter, it must finally be remarked that [2] distinctly 
stipulates “that λmin ≪ λmax must be satisfied for fractal 
analysis of a porous medium, otherwise the porous medium 
is a non-fractal medium”, and therefore warns that “caution 
must be taken for fractal analysis of porous media”. 

 Jin et al., 2016 

“Experimental determination and fractal modeling of the 
effective thermal conductivity of autoclaved aerated 

concrete: effects of moisture content” [8] develops and 
evaluates a fractal thermal conductivity model for two- and 
three-phase porous media, see [8] and [1]’s Section 5.2 for 
further details. [8]’s comparison to experimental data is two-
fold, see [8]’s Figures 10 for dry materials and [8]’s Figures 11-
12 for moist materials, of which the first two are (partially) 
repeated in [1]’s Figure 8b and 9, which are hence targeted in 
this assessment. For that comparison [8] applies data points 
from own measurements on three different types of aerated 
concrete, at both dry and moist conditions. 
Initially, it should be noted that [8] clearly asserts that certain 
factors in its model have been calibrated for optimal fit with 
the measured results, stating that "adjusting the 
dimensionless width, each of the C values could lead to 
excellent prediction in comparison to the measured thermal 
conductivity”. [1] states that the optimal fit for dry conditions, 
see [1]’s Figure 8b, is attained with L 13, C 3 and τ between 
0.0076 and 0.01. For moist conditions, on the other hand, the 
optimal fit is obtained with L 13, C 2 and τ 0.003, see [1]’s 
Figure 9. However, [8]’s Figure 12 corroborates that for low 
moisture contents, L 13, C 1 and τ 0 give the optimal fit.  At 
no point does [8] provide evidence that these values are in 
line with the actual physical features of the porous media 
involved. Moreover, these three factors all define structural 
features of the porous material, and should thus not vary 
from application to application, see also Section 2.2. This 
infers that these factors are resultantly to be considered as 
plain fitting factors, without a concrete physical meaning. 
In addition, the specific Sierpinski carpet configurations 
considered in [8], with L 13 and C 1, 2 or 3, yield fractal 
dimensions of 1.998, 1.987, 1.963 respectively, which for an 
80 % porosity translate to size ratios between smallest and 
largest particles/pores of respectively 1.3·10-42, 2.7·10-8, 
2.5·10-3, see Equation (2). None of these are in line with the 
pore sizes presented in [8]’s Figure 2. That figure moreover 
shows that the incremental pore volumes do not decrease 
exponentially with decreasing pore size, contrary to the 
fractal power law. The fractal dimension is therefore similarly 
to be considered as a plain fitting factor, without a concrete 
physical meaning. 

 Miao et al., 2016 

“Analysis of axial thermal conductivity of dual‐porosity 
fractal porous media with random fractures’’ [9] develops and 
evaluates a fractal thermal conductivity model for fractured 
two-phase porous media, see [9] and [1]’s Section 5.3 for 
more details. [9]’s comparison to measured data is based on 
a single data set comprising merely two data points, see [9]’s 
Figure 2, which is repeated in [1]’s Figure 11b, and which is 
hence targeted in this assessment. For that comparison, [9] 
applies data from [10], related to a specific granite that is 
extensively documented in [11,12]. [9] reports the following 
properties having been applied for its model calculations: 
solid conductivity 2.95 W/mK, air conductivity 0.026 W/mK, 
maximum pore size 1 mm, maximum fracture length 20 mm. 
The latter is complemented by a 0.01 ratio of fracture 
aperture over fracture length, giving rise to a maximum 
fracture aperture of 0.2 mm. 
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Actual physical data in [11,12] do though contradict both the 
maximum pore size and maximum fracture aperture adopted 
in [9]. In [11], it is verified that close to 95 % of the apertures 
are “major” and “minor” fractures, which have average 
apertures of 2.4 mm and 0.5 mm respectively, far above [8]’s 
assumed maximum of 0.2 mm. In [12], pore volume 
distributions for several granite variants span from 0.001 to 
10 µm, remaining strongly below [9]’s assumed maximum of 
1 mm. Furthermore, [9] equally presumes the ratios of 
minimum over maximum pore size and fracture length to be 
0.001, neither of which is supported by information in [10-12].  
Finally, [9] states that [10] reports effective thermal 
conductivities ranging from 2.3 W/mK to 3.9 W/mK, whereas 
[10] in fact documents local values going up to 4.4 W/mK. 
These numbers relate to porous samples, which hence 
undervalue the pure solid conductivity still. That implies that 
[9]’s adoption of 2.95 W/mK as solid conductivity is equally 
questionable. 
These reflections establish that the good agreement between 
calculated and measured results, observable in [9]’s Figure 2, 
stem from calibrating many of the model factors to values 
that deviate strongly from their actual physical counterparts. 
As reasoned previously thus, see Sections 2.2, 3.1 and 3.2, 
these physical factors hence constitute plain fitting factors, 
without a concrete physical meaning. 

 Shen et al., 2020 

“A generalized thermal conductivity model for unsaturated 
porous media with fractal geometry” [13] develops and 
evaluates a fractal thermal conductivity model for three-
phase porous media, see [13] and [1]’s Section 5.4 for more 
details. The model is compared to three data sets in [13], see 
[13]’s Figures 3-5, the second of which is repeated in [1]’s 
Figure 15, which is thus targeted in this assessment. For that 
comparison, [13] adopts measured thermal conductivities of 
three moist aerated concretes as reported in [14].  

  
Figure 1. Reproduction of [1]’s Figure 15, with additional highlighting 
of three characteristic data point clusters. Therein k+ is normalised 
thermal conductivity [-] (effective conductivity over fluid 
conductivity) and Sw [-] is saturation degree (moisture volume over 
pore volume). 

[1]’s Figure 15 is replicated in Figure 1 here, however enriched 
by highlighting three characteristic clusters of data points.  
These are the final clusters for each of the three materials 
involved, and are therefore easily identifiable in the original 
presentation in [14]’s Figure 5. Comparison of [14]’s Figure 5 
with [13]’s Figure 4 however reveals incompatibilities in their 
moisture contents. It should in this respect be noted that 
these are gravimetric moisture contents in [14]’s Figure 5 – 
mass of moisture per unit mass of dry material – versus 
volumetric saturation degrees in [13]’s Figure 4 – volume of 
moisture per unit volume of pore space. 
To contrast these, [14]’s gravimetric moisture contents are 
first multiplied with the material density to obtain volumetric 
moisture contents, which are then divided by the material 
porosity to attain volumetric saturation degrees. These 
calculations are clarified in Table 2, in which the last two lines 
respectively report [14]’s and [13]’s volumetric saturation 
degrees. These two lines reveal that there is a clear deviation 
between the moisture contents in [14]’s Figure 5 versus [13]’s 
Figure 4, thus nullifying the agreement between measured 
and calculated results. 

Table 2. Confrontation of saturation degrees in [14]’s Figure 5 and [13]’s Figure 4. 

Material P1.8 /ε 0.87 P2 / ε 0.82 P4 / ε 0.80 
Gravimetric moisture content in [14] [kg/kg] 2.38 1.05 1.21 

Material density in [14] [kg/m³] 304 363 500 
Volumetric moisture content in [14] [m³/m³] 0.724 0.381 0.605 

Material porosity in [14] [m³/m³] 0.874 0.819 0.802 
Volumetric saturation degree in [14] [m³/m³] 0.83 0.47 0.75 
Volumetric saturation degree in [13] [m³/m³] 0.95 0.56 0.97 

It could in this regard be countered that [13] provides two 
more evaluations of its model, particularly in [13]’s Figures 3 
and 5. It can be verified however (not included here) that 
[13]’s Figure 3 equally suffers from an incorrect translation 
from gravimetric moisture contents to volumetric saturation 
degrees. It can as well be established the model results in 
[13]’s Figure 5 cannot stem from the model. [13] clearly states 
that the parallel model forms the upper limit for its model 
predictions. With the values for [13]’s Figure 5 (porosity 39 %, 
solid conductivity 2.01 W/mK, water conductivity 0.60 W/mK, 

air conductivity 0.023 W/mK), that parallel model results in an 
effective thermal conductivity of 1.46 W/mK for fully 
saturated conditions. With the air conductivity as reference, 
that translates to 63.5 as normalised conductivity.  
Strangely, the model prediction, being near to 97, exceeds 
that upper limit. That conflict implies that the model results 
presented in [13]’s Figure 5 cannot actually originate from 
[13]’s model, hence nullifying the good agreement with the 
measured findings. 
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These reflections establish that all three of [13]’s comparisons 
of calculated and measured data are flawed, with resultantly 
the same conclusion for [1]’s Figure 15. Regrettably though, 
this discussion cannot offer explanations for the detected 
defects. 

 Other models 

3.5.1 Qin et al., 2019 
“A fractal model of effective thermal conductivity for porous 
media with various liquid saturation” [15] develops and 
evaluates a fractal thermal conductivity model for three-
phase porous media. The model is compared to multiple data 
sets in [15], see [15]’s Figures 4-7.  That same model is 
compared to lattice Boltzmann simulations and Maxwell 
equation calculations in [16]. Regrettably, [17] reveals that 
many of [16]’s model results exceed the parallel model, which 
is generally accepted as the upper limit for the thermal 
conductivity of porous media. Furthermore, it can be verified 
that [15,16]’s model may lead to negative conductivities, 
which should be physically and mathematically impossible. 
Evaluating [15]’s Equation 19 or [16]’s Equation 1 with solid 
conductivity 0.2 W/mK, fluid conductivity 1 W/mK, porosity 
40 % and particle size ratio 0.001 (the latter two combine to 
fractal dimension 2.89, see [15]’s Equation 12), yields an 
effective thermal conductivity of -3.92 W/mK. 
Both flaws can be traced back to a plain mathematical error 
in the model development [17], particularly in [15]’s Equation 
15, quantifying the total volume of the solid spheres 
comprised in the fractal particle assembly. This expression is 
incorrect, as it applies the third power of the average sphere 
diameter, whereas it should be using the average of the third 
power of the sphere diameters, see [17] for more details. 
Exploratory calculations in [17] establish that [15,16] 
resultantly strongly underestimate the solid particles’ 
volume, with at least a factor 4, but often going up to and over 
a factor 10. This error ensuingly nullifies all good agreement 
between calculated and measured results reported in [15], as 
[15]’s Figures 4-7 all make use of the flawed model. It can be 
reasoned (not included here) that [15] has compensated for 
the error by applying unrealistically small ratios of smallest 
and largest particle size. While the sources for [15]’s 
measured data primarily concern sphere packs, see also 
Sections 2.2 and 3.1, with particle and pore size ratios close to 
1 hence, the applied size ratios in [15] are all (far) smaller than 
that. This implies that this physical factor hence constitutes a 
plain fitting factor, without a concrete physical meaning. On 
this matter, it must finally be remarked that [2] distinctly 
stipulates “that λmin ≪ λmax must be satisfied for fractal 
analysis of a porous medium, otherwise the porous medium 
is a non-fractal medium”, and hence warns that “caution 
must be taken for fractal analysis of porous media”. 

3.5.2 Qin et al., 2023 
“A novel fractal model for effective thermal conductivity in 
granular porous media” [18] develops and evaluates the 
fractal thermal conductivity model for two-phase porous 
media. The model is compared to multiple data sets in [18], 
see [18]’s Figures 3-5, and this assessment exemplarily targets 
[18]’s Figure 3b. For that comparison, [18] adopts measured 

data from [19], particularly glass beads, lead shot and quartz 
sand. For these materials, [19] explicitly states that “the 36% 
porosity sand was a pack of 20/30 mesh (0.84-0.59 mm) 
Ottawa sand”, “the glass beads (Micro-beads 405) are 
approximately 40/50 mesh (0.42-0.297 mm). The mean 
particle diameter of the lead shot was 1.23 mm.” These 
numbers infer that the particle size ratios are all close to 1 
thus, whereas [18] employs 0.0025 as this ratio in its model 
calculations. As before hence, see Sections 3.1, 3.2 and 3.5.1, 
the fractal dimension is applied as a plain fitting factor, 
without a concrete physical meaning. Similar reasonings 
apply to the other relevant figures in [18]. 
It should moreover be noted that [18] misportrays the result 
at solid conducitivity/fluid conductivity 1 in [18]’s Figure 3b. 
Calculations with [18]’s Equation 27 yields 1.21 as the 
resulting effective conductivity/fluid conductivity, whereas 
[18]’s Figure 3b clearly puts that value at 1.00. Furthermore, 
the resulting 1.21 is an unphysical result, as solid 
conductivity/fluid conductivity equalling 1 implies the same 
conductivity for solid and fluid. That should lead to the 
effective conductivity also being equal to that equal solid and 
fluid conductivity, or effective conductivity/fluid conductivity 
equalling 1. The observed deviation hence infers a flaw in the 
model development in [18], which is not further addressed 
here. 

3.5.3 Wu et al., 2020 
“A new fractal model on fluid flow/heat/mass transport in 
complex porous structures” [20] develops and evaluates a 
fractal thermal conductivity model for three-phase porous 
media, see [20] for more details. The model is compared to a 
single data set in [20], see [20]’s Figure 11. It can be clearly 
noted in this figure that the experimental data depict a 
negligible influence of moisture content on the effective 
thermal conductivity, in line with the predictions by [20]’s 
thermal conductivity model, but contrary to various literature 
results on this theme. Regrettably, it has been verified that 
these experimental data were fabricated, in order to realise a 
good agreement with the modelled data [21]. The same 
verdict additionally applies to the permeability data 
presented in [20]’s Figure 9. 

 Closing discussion 

Fractal-geometry-based analytical models for the thermal 
conductivity of dry and moist porous materials are in recent 
years becoming more and more popular, see the many recent 
papers on this topic referenced above. A recent publication in 
this journal [1] assesses a selection of these models, and 
deems them “to be a promising method” since they 
“demonstrate high reliability in reproducing experimental 
data under various conditions”.   
This discussion of [1] shines a different light on the success of 
these fractal thermal conductivity models. It is shown above 
that, in some instances, the good agreement between 
calculated and measured results is obtained despite 
mathematical errors in the calculated data or 
misinterpretation of the experimental data, or exceptionally, 
via fabrication of measured data. These grave flaws do though 
not relate to the prevalent segment of fractal thermal 
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conductivity models, wherein flawed calculated or measured 
findings do not play a role. For these instances however, it has 
been strongly established that the many “physical” factors 
that are typically present in such models (fractal dimension, 
particle size ratio, solid conductivity,…) are commonly 
calibrated to attain a good agreement between measured 
and calculated data. Such calibration would not be frowned 
upon if the ensuingly fitted numbers would align with the 
tangible physical reality, which is however generally not the 
case. It has been extensively demonstrated above that these 
“physical” factors are in reality often used as plain fitting 
factors, without concrete physical meaning. This observation 
reduces [1]’s conclusion that fractal thermal conductivity 
models “demonstrate high reliability in reproducing 
experimental data under various conditions” to the 
conclusion that the fractal models often simply have enough 
heuristic buttons to adjust the calculated results to the 
measured data. It should be noted however that this 
characteristic is almost never acknowledged in the source 
publications, and neither in [1], therefore yielding an overly 
positive impression. 
As a final complement to this discussion, it should be 
mentioned that fractal approaches are also gathering 
momentum for another application related to building 
materials, particularly for the modelling of capillary 
absorption via the bundle-of-tubes approach. Discussions of 
some selected models on that front can be found in [22-25]. 
All of these formulate serious concerns on the reliability of the 
fractal bundle-of-tubes models for capillary absorption 
involved. 

 Conclusion 

In November 2023 this journal published the paper “Thermal 
conductivity of porous building materials: An exploration of 
new challenges in fractal modelling solutions” [1]. That paper 
assesses four fractal models for the thermal conductivity of 
dry and moist porous materials, and concludes that fractal-
geometry-based approaches seem “to be a promising 
method” as they “demonstrate high reliability in reproducing 
experimental data under various conditions”. The paper 
ultimately asserts that “the future prospects for the use of 
fractal geometry for the formalisation of predictive models of 
thermal conductivity in porous materials are definitely 
promising and require further research and development to 
overcome current challenges”. The discussion above has 
extensively demonstrated that the good agreement with 
experimental data often stems from calibration of the various 
“physical factors” that are typically comprised in these 
models, with the ensuingly fitted values commonly deviating 
(highly) from actual physical reality. These factors, being 
allocated but not employed as physical features, thus reduce 
to plain fitting factors without physical meaning, which in turn 
degrades these models from predictive to calibratable. This 
discussion does hence not share [1]’s positive opinions on the 
prospects of fractal-geometry-based thermal conductivity 
models, and advises strong caution instead. 
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