Predicting salt damage in practice: A theoretical insight into laboratory tests – supplementary material: Basic equation of crystallization pressure ## Supplementary material Robert J. Flatt^{a*}, Nevin Aly Mohamed^{a,b}, Francesco Caruso^c, Hannelore Derluyn^d, Julie Desarnaud^e, Barbara Lubelli^f, Rosa Maria Espinosa-Marzal^g, Leo Pel^h, Carlos Rodriguez-Navarroⁱ, George W. Scherer^j, Noushine Shahidzadeh^k, Michael Steiger^j Received: 30 November 2017 / Accepted: 28 December 2017 / Published online: 31 December 2017 © The Author(s) 2017. This article is published with open access and licensed under a Creative Commons Attribution 4.0 International License. Let us consider a large salt crystal C at a pressure P_C and in contact with a solution at pressure P_0 . In this case, "large" means that its interfacial curvature does not significantly affect its solubility. According to Fig. 1, the pressure P_C is applied by the pore walls to the loaded faces of the crystal while the free faces are under pressure P_C . The crystal dissociates into a number of species that we will note P_C with a stoichiometric coefficient P_C determined for one mole of the crystal. For such a large crystal, the free energy change of dissolution is given by: $$\Delta G = \Delta G^{\circ} + RT ln Q \tag{1}$$ in which Q is the ion activity product given by: $$Q = \prod a_{X_i}^{v_i} \tag{2}$$ and where a_{X_i} is the activity of compound X_i and v_i is the corresponding stoichiometric coefficient, which for the crystal is -1. For the compounds released by the crystal all stoichiometric coefficients are positive. In Eq. (1), ΔG° is related to the chemical potentials of the pure substances, μ_i^{0,P_i} at the corresponding pressure: $$\Delta G^0 = \sum v_i \mu_i^{0, P_i} \tag{3}$$ Through the Gibbs-Duhem equation, it is possible to express the chemical potential of the crystal face at P_C , μ_i^{0,P_C} , as a function of its value at P_0 , μ_i^{0,P_0} [15,95]: $$\mu_C^{0,P_C} = \mu_C^{0,P_0} + \nu_C (P_C - P_0) \tag{4}$$ which holds if we assume that the crystal is incompressible. Inserting Eq.(4) into Eq.(3), we get: $$\Delta G^0 = \Delta G^{0,P_0} - v_C (P_C - P_0) \tag{5}$$ ∧/ith $$\Delta G^{0,P_0} = \sum \nu_i \mu_i^{0,P_0} \tag{6}$$ With Eq.(1), we get: $$\Delta G = \Delta G^{0,P_0} + RT lnQ - v_C (P_C - P_0)$$ (7) ^a ETH Zurich, Switzerland ^b Suez University, Egypt ^c University of Oslo, Norway ^d CNRS - Univ Pau & Pays Adour, France ^eThe Getty Institute, USA ^fTU Delft, The Netherlands ^g University of Illinois at Urbana Champaign, USA ^h Eindhoven University of Technology, The Netherlands Universtiy of Granada, Spain Princeton University, USA ^kUniversity of Amsterdam, The Netherlands University of Hamburg, Germany ^{*} Corresponding author: Robert J. Flatt, E-mail: flattr@ethz.ch At equilibrium $\Delta G=0$. Therefore, if the pressure $P_{\rm C}$ is the same as in the solution, then we recover the well established relation: $$\Delta G^{0,P_0} = -RT lnK \tag{8}$$ where K is the value of Q at equilibrium when all phases are at the same pressure P_0 . Substitution of Eq.(10) into Eq.(7) gives: $$\Delta G = RT ln \frac{Q}{K} - v_C (P_C - P_0) \tag{9}$$ Therefore, for the equilibrium between a large crystal at pressure P_c and a solution at pressure P_0 , we obtain the well established equation of (maximum) crystallization pressure [15.30]: $$(P_C - P_0) = \frac{RT}{v_C} \ln \frac{Q}{K} \tag{10}$$ This represents the upper bound on the pressure exerted on a pore wall, and can be reached at equilibrium only when a large crystal is trapped in a pore with small entries. It is also the peak transient pressure that can be exerted when a crystal growing in a large pore first makes contact with the wall. As the crystal grows, it reduces the local supersaturation and the pressure decreases.