

Numerical benchmark campaign of COST Action TU1404 – microstructural modelling

Supplementary material Model 3 - Micromechanical homogenization

Mateusz Wyrzykowski¹, Julien Sanahuja², Laurent Charpin², Markus Königsberger^{3*}, Christian Hellmich³, Bernhard Pichler³, Luca Valentini⁴, Túlio Honório⁵, Vit Smilauer⁶, Karolina Hajkova⁶, Guang Ye⁷, Peng Gao⁷, Cyrille Dunant⁸, Adrien Hilaire⁹, Shashank Bishnoi¹⁰, Miguel Azenha¹¹

- ¹ Empa, Swiss Federal Laboratories for Materials Science and Technology, Switzerland
- EDF, R&D MMC, France
- 3 TU Wien, Austria
- University of Padua, Italy
- Université Paris-Est, Laboratoire Navier (UMR 8205), CNRS, ENPC, IFSTTAR, France
- ⁶ Czech Technical University in Prague, Czech Republic
- 7 TU Delft, The Netherlands
- Department of Engineering, University of Cambridge, UK
- ⁹ EPFL, Lausanne, Switzerland
- 10 IIT Delhi, India
- 11 ISISE, University of Minho, Portugal

Received: 5 December 2017 / Accepted: 25 December 2017 / Published online: 30 December 2017

© The Author(s) 2017. This article is published with open access and licensed under a Creative Commons Attribution 4.0 International License.

1 Introduction

In this document the input data for the Model 3 - Micromechanical homogenization model used in the numerical benchmark [1] is presented as a supplementary material.

2 Input data - model 3

From the experimental campaign described in Section 2 in [1] the water-to-cement ratio (w/c=0.30) and the evolution of the heat of hydration (as presented in Fig. 2 in [1]) are used together with densities according to Table I in order to determine the phase volume fraction evolutions. Elastic phase properties are given in Table I. The deviatoric hydrate strength of ordinary Portland cement mixes is age- and composition-independent and amounts to 69.9 MPa as determined based on independent experiments from Pichler and Hellmich [2].

Table 1. Material constants of micromechanical phases from [2].

Material phase	Young's	Poisson's ratio	Density
	modulus [GPa]	[-]	[g/cm³]
Cement clinker	139.3	0.3	3.109
Hydrates	29.16	0.24	2.073
Water	0	-	1.000
Air	0	-	0

References

- M. Wyrzykowski, et al., Numerical benchmark campaign of COST Action TU1404 – microstructural modelling. RILEM Technical Letters (2017) 2: 99-107.
 - http://dx.doi.org/10.21809/rilemtechlett.2017.44
- [2] B. Pichler, C. Hellmich, Upscaling quasi-brittle strength of cement paste and mortar: A multi-scale engineering mechanics model. Cem Concr Res (2011) 41: 467-476.
 - https://doi.org/10.1016/j.cemconres.2011.01.010

^{*} Corresponding author (this supplementary material): Markus Königsberger, E-mail: mkonigsb@ulb.ac.be