

Numerical benchmark campaign of COST Action TU1404 – microstructural modelling

Supplementary material Model 7 – HYMOSTRUC3D

Mateusz Wyrzykowski¹, Julien Sanahuja², Laurent Charpin², Markus Königsberger³, Christian Hellmich³, Bernhard Pichler³, Luca Valentini⁴, Túlio Honório⁵, Vit Smilauer⁶, Karolina Hajkova⁶, Guang Ye⁷*, Peng Gao⁷, Cyrille Dunant⁸, Adrien Hilaire⁹, Shashank Bishnoi¹⁰, Miguel Azenha¹¹

- ¹ Empa, Swiss Federal Laboratories for Materials Science and Technology, Switzerland
- EDF, R&D MMC, France
- 3 TU Wien, Austria
- University of Padua, Italy
- Université Paris-Est, Laboratoire Navier (UMR 8205), CNRS, ENPC, IFSTTAR, France
- ⁶ Czech Technical University in Prague, Czech Republic
- 7 TU Delft, The Netherlands
- Department of Engineering, University of Cambridge, UK
- ⁹ EPFL, Lausanne, Switzerland
- 10 IIT Delhi, India
- 11 ISISE, University of Minho, Portugal

Received: 5 December 2017 / Accepted: 25 December 2017 / Published online: 30 December 2017
© The Author(s) 2017. This article is published with open access and licensed under a Creative Commons Attribution 4.0 International License.

1 Introduction

In this document the input data for *Model 7- HYMOSTRUC3D* used in the numerical benchmark [1] is presented as a supplementary material. The input data file is attached as a separate file.

2 Input data Model 7 – HYMOSTRUC3D

The chemical composition of PC is listed in Table 1. The mineral composition of Portland cement (PC) is: 60.8% C₃S, 12.5% C₂S, 4.32% C₃A and 9.9% C₄AF. The density of PC is 3.15 g/cm³. The water to cement ratio (w/c) of the cement paste is 0.3. As shown in Fig. 1, the particle size distribution of PC follows the Rosin Rammler Bennett (RRB) distribution: $G(x) = 1 - exp(-bx^n)$. G(x) is the cumulative weight, x is the particle diameter, n and b are the fitting parameters.

Table 1 Chemical compositions of PC Raw Chemical composition (wt. %) CaO Fe_2O_3 MgO Na₂O SO₃ PC 63 20 4.5 2.9 1.9 0.95 0.19 2.8

3 Model parameters

3.1 Model parameters for hydration process and microstructure development

 K_0 and δ_{tr} are two important model parameters in HYMOSTRUC3D. K_0 is the initial penetration rate of the reaction front of hydrating C₃S, C₂S, C₃A, C₄AF. δ_{tr} is the transition thickness when the hydration mechanism of C₃S, C₂S, C₃A, C₄AF change from *phase boundary reaction* to diffusion-controlled reaction (See details of the definitions of

^{*} Corresponding author (this supplementary material): Guang Ye, E-mail: G.Ye@tudelft.nl

 K_0 and δ_{tr} in [2]). The values of K_0 and δ_{tr} of C₃S, C₂S, C₃A, C₄AF are calculated with the equations listed in Table 2. Table 3 lists the calculated values of K_0 and δ_{tr} for the PC presented in Table 1.

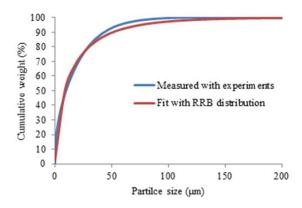


Figure 1. Particle size distribution of PC (n = 0.67588, b = 0.16112)

3.2 Model parameters for heat release

The total heat release of PC is calculated from the degree of hydration of the components in PC (see Eq. (5)).

$$Q(PC) = \alpha(C_3S) \times f(C_3S) \times Q(C_3S) + \alpha(C_2S) \times f(C_2S) \times Q(C_2S)$$

$$\alpha(C_3A) \times f(C_3A) \times Q(C_3A) + \alpha(C_4AF) \times f(C_4AF) \times Q(C_4AF)$$
(5)

where Q(PC) is the total heat release [J/g], $\alpha(C_3S)$, $\alpha(C_2S)$, $\alpha(C_3A)$ and $\alpha(C_4AF)$ are the simulated degree of hydration of C₃S, C₂S, C₃A and C₄AF, respectively. $f(C_3S)$, $f(C_2S)$, $f(C_3A)$ and $f(C_4AF)$ are the mass fraction of C₃S, C₂S, C₃A and C₄AF, respectively. $Q(C_3S)$, $Q(C_2S)$, $Q(C_3A)$ and $Q(C_4AF)$ are the heat release of C₃S, C₂S, C₃A and C₄AF when they completely

hydrate [J/g]. In this study $Q(C_3S)$, $Q(C_2S)$, $Q(C_3A)$ and $Q(C_4AF)$ are equal to 570, 260, 840 and 125 [J/g] according to the Woods' report, see [2].

3.3 Model parameters for compressive strength, dynamic Young's modulus and shear modulus

In HYMOSTRUC3D the contact areas between particles are calculated (see the concept of contact areas in [3]. The contact areas are used to calculate the compressive strength, Young's modulus and Shear modulus of cement paste (see Eq. (6) to Eq. (8)).

$$\sigma = 349.3A_{SEC} - 2.0049 \tag{6}$$

$$E = -402.25(A_{SEC})^2 + 206.63A_{c-eff}$$
 (7)

$$G = -145.09(A_{SEC})^2 + 79.787A_{c-eff}$$
 (8)

where σ [MPa], E [GPa] and G [GPa] are the calculated compressive strength, Young's modulus and Shear modulus of cement paste, respectively. A_{SEC} is the simulated specific effective contact area.

References

- [1] M. Wyrzykowski, et al., Numerical benchmark campaign of COST Action TU1404 – microstructural modelling. RILEM Technical Letters (2017) 2: 99-107. http://dx.doi.org/10.21809/rilemtechlett.2017.44
- [2] K. Van Breugel, Simulation of hydration and formation of structure in hardening cement-based materials. PhD Thesis, Delft, Delft University of Technology, The Netherlands, 1991.
- [3] Z. Sun, G. Ye, S.P. Shah, Microstructure and early-age properties of Portland cement paste—effects of connectivity of solid phases. ACI Materials Journal (2005) 102: 122-129.

No.	Phase	K_0 [μ m/h]	δ_{tr} [µm]	
1	C₃S	0.0635 + 0.0195×(1 - % C₃S)	2.1199 + 1.4707×(1 - % C ₃ S)	(1)
2	C ₂ S	$0.0033 + 0.0020 \times (1 - \% C_2S)$	2.0730 + 1.1528×(1 - % C ₂ S)	(2)
3	C ₃ A	1.2118 - 1.1714×(1 - % C ₃ A)	2.3280 + 1.2758×(1 - % C ₃ A)	(3)
4	C ₄ AF	0.02	1.19	(4)

Table 3 Calculated hydration parameters K_0 and δ_{tr} for different components of PC particles

No.	Phase	K_0 [μ m/h]	$δ_{tr}$ [μm]
1	C ₃ S	0.071	2.696
2	C ₂ S	0.005	3.081
3	C ₃ A	0.091	3.549
4	C ₄ AF	0.020	1.190