Method for experimentally determining N-A-S-(H) solubility

Authors

  • Trevor Williamson
  • Joonkyoung Han
  • Lynn Katz
  • Gaurav Sant
  • Maria Juenger University of Texas, Austin

DOI:

https://doi.org/10.21809/rilemtechlett.2018.63

Keywords:

Geopolymers, Alkali-Activated Cement, Thermodynamic Models, Solubility, Cement Chemistry

Abstract

Inorganic polymer binders, also sometimes called geopolymers or alkali-activated cements, can serve as an alternative to ordinary portland cement (OPC) in concrete.  The development of thermodynamic models to predict phase development and, ultimately, engineering properties, of inorganic polymer binders is an important step toward enabling their widespread use. However, such models require self-consistent solubility data of the primary phase in inorganic polymer binders, sodium aluminosilicate hydrate(s). To date, there is very little solubility information available for this phase. Here, a rigorous method for synthesizing sodium aluminosilicate hydrate(s) of controlled composition, and for measuring its solubility is presented. This approach allows complete stoichiometric control over the (initial) solution composition to elucidate directly the development of N-A-S-H composition as it relates to a given solution composition. A review of previous literature related to the solubility of other cementitious materials is presented, and the need for thermodynamic data is discussed. Finally, a sample calculation is presented for determining the solubility product (Ksp) of a laboratory synthesized sodium aluminosilicate hydrate.

Downloads

Published

19.02.2019

How to Cite

(1)
Williamson, T.; Han, J.; Katz, L.; Sant, G.; Juenger, M. Method for Experimentally Determining N-A-S-(H) Solubility. RILEM Tech Lett 2019, 3, 104-113.

Issue

Section

Articles

Most read articles by the same author(s)