Five recommendations to accelerate sustainable solutions in cement and concrete through partnership
DOI:
https://doi.org/10.21809/rilemtechlett.2023.173Keywords:
Partnership, Sustainable Development Goals, Education, Raw materials, StandardsAbstract
Though the technical knowledge to make cement and concrete more sustainable already exists, implementation of solutions lags behind the rate needed to mitigate climate change and meet the targets set by the Sustainable Development Goals. Whilst most of the focus around the built environment is on embodied carbon, we stress an important but neglected dimension: partnership (SDG17). Effective partnerships can be powerful enablers to accelerate sustainable solutions in cement and concrete, and let such solutions transfer from academia to the market. This can be achieved through knowledge generation, solution implementation, and policy development, among other routes. In this article, we share five recommendations for how partnerships can address neglected research questions and practical needs: 1) reform Science, Technology, Engineering and Mathematics (STEM) education to train “circular citizens”; 2) map out routes by which cementitious materials can contribute to a “localization” agenda; 3) generate open-access maps for the geographical distribution of primary and secondary raw materials; 4) predict the long-term environmental performance of different solutions for low-CO2 cements in different geographical areas; 5) overhaul standards to be technically and regionally fit for purpose. These approaches have the potential to make a unique and substantial contribution towards achieving collective sustainability goals.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Joseph Mwiti Marangu, Alastair T M Marsh, Daman K Panesar, Nonkululeko W Radebe, Alicia Regodon Puyalto, Wolfram Schmidt, Luca Valentini
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright of the articles published in RILEM Technical Letters and grant the journal the right of first publication with open access. The work is simultaneously licensed under Creative Commons Attribution 4.0 International License (CC BY 4.0) that allows others to share and adapt the work under the following terms: 1) a proper attribution is given in a form of bibliographic record with the DOI link directing to RILEM Technical Letters; 2) a link to the license is provided; 3) the changes (if any) are indicated.