Hydration behaviour of limestone-calcined clay and limestone-slag blends in ternary cement
DOI:
https://doi.org/10.21809/rilemtechlett.2021.134Keywords:
LC3, carboaluminates, limestone slag cement, hydrationAbstract
The effect of kaolinitic calcined clay and slag on the hydration of limestone-containing ternary blended cements was investigated. The effect of alumina from different sources of SCMs was considered to activate the formation of carboaluminates. Ternary blends with 50% ordinary portland cement clinker, 45% blends of limestone calcined clay (LC2) in 1:2 blend and slag limestone blend (SLS) in 2:1 mix proportion with 5% of gypsum were studied. The hydration behaviour was analysed based on cement mortar compressive strength, heat of hydration using an isothermal calorimeter and bound water measured using thermal gravimetric analysis (TGA). In addition, the degree of hydration of clinker phases and the composition of calcium - alumino - silicate - hydrate (C-A-S-H) gels forming in two different systems were compared on 90 days hydrated samples analysed using X-Ray diffractometry (XRD) and scanning electron microscopy - energy dispersive X-ray spectroscopy (SEM-EDX) respectively. The results show a rapid early strength development in limestone calcined clay cement blend (LC3) but a lower clinker hydration in comparison with slag limestone cement blend (SLSC) at later ages. In both the cement blends the formation of hemicarboaluminate (Hc) and monocarboaluminate (Mc) was confirmed at 90 days, but the conversion of Hc to Mc was higher in SLSC. Results further confirmed a lower degree of hydration and higher alumina incorporation in the C-A-S-H gel in the LC3 comparison to SLSC. The presence of calcium hydroxide was also confirmed in the SLSC blend due to the hydraulic nature of slag that supported the later age conversion of Hc to Mc as not seen in LC3.

Downloads
Published
How to Cite
Issue
Section
License
Authors retain copyright of the articles published in RILEM Technical Letters and grant the journal the right of first publication with open access. The work is simultaneously licensed under Creative Commons Attribution 4.0 International License (CC BY 4.0) that allows others to share and adapt the work under the following terms: 1) a proper attribution is given in a form of bibliographic record with the DOI link directing to RILEM Technical Letters; 2) a link to the license is provided; 3) the changes (if any) are indicated.