Impact of calcination technology on properties of calcined clays
DOI:
https://doi.org/10.21809/rilemtechlett.2023.194Keywords:
Calcined clays, Calcination, Standard mortars, Pozzolanic reactivityAbstract
Calcined kaolinitic clays are known to be very reactive pozzolans, and combined with limestone can enable significant clinker substitution in cementitious systems. Thermal activation of kaolinitic clays takes place when the hydroxyl groups are removed, leading to formation of an amorphous reactive structure. There are several technologies for clay activation, but the most used at industrial scale are flash and stationary calcination. The objective of this paper is to investigate the impact of the calcination regime on the properties of the calcined product. It presents the results of an experimental program carried out with a kaolinitic clay calcined at a flash calciner and at a laboratory furnace. Calcination brings about a drop in specific surface, and an increase of average diameter due to agglomeration, an effect more pronounced in stationary calcination. No major differences were found at the heat of hydration, CH consumption and phase assemblage for the fully dehydroxylated material. The flash calcined material had slightly better results mainly due to a finer PSD compared with the one stationary calcined. No major difference was found in water demand and compressive strength for both regimes. As expected, the main impact of the calcination regime is the agglomeration.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 José Fernando Martirena Hernández, Mathieu Antoni, Yanisleidy Oquendo-Machado, Ruben Borrajo-Perez, Adrian Alujas-Diaz, Roger Almenares-Reyes
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright of the articles published in RILEM Technical Letters and grant the journal the right of first publication with open access. The work is simultaneously licensed under Creative Commons Attribution 4.0 International License (CC BY 4.0) that allows others to share and adapt the work under the following terms: 1) a proper attribution is given in a form of bibliographic record with the DOI link directing to RILEM Technical Letters; 2) a link to the license is provided; 3) the changes (if any) are indicated.